首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies on mechanomyogram (MMG) signals no analysis of these signals accompanying force generation has been performed. Therefore, we have recorded MMG signals (previously referred to as muscle sound or acoustomyographic signals) during voluntary contractions of forefinger flexor muscles in 31 young subjects. These subjects made contractions to produce force records of triangular or trapeziform shape. The peak target force amounted to 10, 20 or 40 N which represented less than 40% of maximal voluntary contraction. The MMG signals during the transient phases of force generation at three different rates were analysed. The MMG intensity level calculated for MMG records and the peak-to-peak amplitude of MMG signals correlated with both the velocity of force increase and the contraction force. The occurrence of the strongest MMG signals corresponded to changes in contractile force. Therefore, it is suggested that measurements of these parameters could be a useful tool in studies of changes in contractile force. Accepted: 11 March 1998  相似文献   

2.
A modification of the methods is described which makes it possible to measure pyridine nucleotide fluorescence from the brain cortex in vivo without interference from movement and hemodynamic artifacts. Movement artifacts were eliminated by the use of a window technique. Fluorescence changes due to changes in hemoglobin oxygenation have been eliminated by measuring fluorescence at an isobestic wavelength of the hemoglobin-oxyhemoglobin reaction. The interference due to changes in red blood cell concentration has been studied by simultaneous measurements of fluorescence and ultraviolet reflection. Hemodilution revealed a linear relationship between the fluorescence from the pyridine nucleotide and reflected ultraviolet light. The ratio between the light absorption changes was approximately unity under the particular optical geometry employed in this study. This method has been used to measure fluorescence changes produced by nitrogen anoxia. The technique is discussed in relation to previous methods and the effects of anoxia are compared to previous findings.  相似文献   

3.
We developed an optical probe for cross-polarized reflected light measurements and investigated optical signals associated with electrophysiological activation in isolated lobster nerves. The cross-polarized baseline light intensity (structural signal) and the amplitude of the transient response to stimulation (functional signal) measured in reflected mode were dependent on the orientation of the nerve axis relative to the polarization plane of incident light. The maximum structural signal and functional response amplitude were observed at 45 degrees , and the ratio of functional to structural signals was approximately constant across orientations. Functional responses were measured in single trials in both transmitted and reflected geometries and responses had similar waveforms. Both structural and functional signals were an order of magnitude smaller in reflected than in transmitted light measurements, but functional responses had similar signal/noise ratios. We propose a theoretical model based on geometrical optics that is consistent with experimental results. In the model, the cross-polarized structural signal results from light reflection from axonal fibers and the transient functional response arises from axonal swelling associated with neural activation. Polarization-sensitive reflected light measurements could greatly enhance in vivo imaging of neural activation since cross-polarized responses are much larger than scattering signals now employed for dynamic functional neuroimaging.  相似文献   

4.
Noncontact optical measurements reveal that transient changes in squid giant axons are associated with action potential propagation and altered under different environmental (i.e., temperature) and physiological (i.e., ionic concentrations) conditions. Using a spectral-domain optical coherence tomography system, which produces real-time cross-sectional images of the axon in a nerve chamber, axonal surfaces along a depth profile are monitored. Differential phase analyses show transient changes around the membrane on a millisecond timescale, and the response is coincident with the arrival of the action potential at the optical measurement area. Cooling the axon slows the electrical and optical responses and increases the magnitude of the transient signals. Increasing the NaCl concentration bathing the axon, whose diameter is decreased in the hypertonic solution, results in significantly larger transient signals during action potential propagation. While monophasic and biphasic behaviors are observed, biphasic behavior dominates the results. The initial phase detected was constant for a single location but alternated for different locations; therefore, these transient signals acquired around the membrane appear to have local characteristics.  相似文献   

5.

Background  

Intrinsic optical signals (IOS), which reflect changes in transmittance and scattering light, have been applied to characterize the physiological conditions of target biological tissues. Backscattering approaches allow mounting of the source and detector on the same side of a sample which creates a more compact physical layout of device. This study presents a compact backscattering design using fiber-optic guided near-infrared (NIR) light to measure the amplitude and phase changes of IOS under different osmotic challenges.  相似文献   

6.
Abstract. We recently discussed a method for measuring optical properties of light scattering and absorbing plant tissue ( Seyfried, Fukshansky & Schafer, 1983 ). This method has been used to measure the changes in optical properties of cotyledons between 360 and 1000 run during the first 7d of development. The seedlings were either etiolated or grown under continuous white light, the latter either herbicide-treated (SAN 9789 = Norflurazon) or untreated. Some of the observed changes in seedlings grown under white light are due to chlorophyll accumulation. This accumulation leads to an increase in absorption coefficients at all wavelengths except in the 750 to 850 nm region. Reflectance, transmittance, and the scattering coefficient decreased markedly. Other changes seem to be independent of light conditions since they occur in much the same way under all treatments. These are a generally decreasing reflectance and scattering coefficient and an even stronger decrease of reflectance from the upper face of the cotyledon as compared to the reflectance from the lower face, in particular in the blue region of the spectrum. The observed changes are discussed in terms of light gradients and the resulting problems for in vivo spectroscopy.  相似文献   

7.
Nonuniform volume changes during muscle contraction.   总被引:1,自引:0,他引:1       下载免费PDF全文
We measured dynamic changes in volume during contraction of live, intact frog skeletal muscle fibers through a high-speed, intensified, digital-imaging microscope. Optical cross-sections along the axis of resting cells were scanned and compared with sections during the plateau of isometric tetanic contractions. Contraction caused an increase in volume of the central third of a cell when axial force was maximum and constant and the central segment was stationary or lengthened slightly. But changes were unequal along a cell and not predicted by a cell's resting area or shape (circularity). Rapid local adjustments in the cytoskeletal evidently keep forces in equilibrium during contraction of living skeletal muscle. These results also show that optical signals may be distorted by nonuniform volume changes during contraction.  相似文献   

8.
Development of epithelial precancer and cancer leads to well-documented molecular and structural changes in the epithelium. Recently, it has been recognized that stromal biology is also altered significantly with preinvasive disease. We used the finite-difference time-domain method, a popular technique in computational electromagnetics, to model light scattering from heterogeneous collagen fiber networks and to analyze how neoplastic changes alter stromal scattering properties. Three-dimensional optical images from the stroma of fresh normal and neoplastic oral-cavity biopsies were acquired using fluorescence confocal microscopy. These optical sections were then processed to create realistic three-dimensional collagen networks as model input. Image analysis revealed that the volume fraction of collagen fibers in the stroma decreases with precancer and cancer progression, and fibers tend to be shorter and more disconnected in neoplastic stroma. The finite-difference time-domain modeling results showed that neoplastic fiber networks have smaller scattering cross sections compared to normal networks. Computed scattering-phase functions indicate that high-angle scattering probabilities tend to be higher for neoplastic networks. These results provide valuable insight into the micro-optical properties of normal and neoplastic stroma. Characterization of optical signals obtained from epithelial tissues can aid in development of optical spectroscopic and imaging techniques for noninvasive monitoring of early neoplastic changes.  相似文献   

9.
《Biophysical journal》2020,118(10):2366-2384
Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.  相似文献   

10.
Absorbance signals were recorded from cut single skeletal muscle fibers stained with the nonpenetrating potentiometric dye NK2367 and mounted in a three-vaseline-gap voltage clamp. The characteristics of the optical signals recorded under current and voltage-clamp conditions were studied at various wavelengths between 500 and 800 nm using unpolarized light. Our results indicate that the absorbance signals recorded with this dye reflect potential changes across both the surface and T system membranes and that the relative contribution of each of these membrane compartments to the total optical change is strongly wavelength dependent. A peak intensity change was detected at 720 nm for the surface membrane signal and at 670 nm for the T system. Evidence for this wavelength-dependent separation derives from an analysis of the kinetics and voltage dependence of the optical signals at different wavelengths, and results obtained in detubulated fibers. The 670-nm optical signal was used to demonstrate the lack of potential control in the T system by the voltage clamp and the effect of a tetrodotoxin (TTX)-sensitive sodium conductance on tubular depolarization.  相似文献   

11.
Force measurements are performed on single DNA molecules with an optical trapping interferometer that combines subpiconewton force resolution and millisecond time resolution. A molecular construction is prepared for mechanically unzipping several thousand-basepair DNA sequences in an in vitro configuration. The force signals corresponding to opening and closing the double helix at low velocity are studied experimentally and are compared to calculations assuming thermal equilibrium. We address the effect of the stiffness on the basepair sensitivity and consider fluctuations in the force signal. With respect to earlier work performed with soft microneedles, we obtain a very significant increase in basepair sensitivity: presently, sequence features appearing at a scale of 10 basepairs are observed. When measured with the optical trap the unzipping force exhibits characteristic flips between different values at specific positions that are determined by the base sequence. This behavior is attributed to bistabilities in the position of the opening fork; the force flips directly reflect transitions between different states involved in the time-averaging of the molecular system.  相似文献   

12.
Large changes in the opacity of the unstained mouse neurohypophysis follow membrane potential changes known to trigger the release of peptide hormones. These intrinsic optical signals, arising in neurosecretory terminals, reflect variations in light scattering and depend upon both the frequency of stimulation and [Ca2+]o. Their magnitude is decreased in the presence of Ca2+ antagonists and by the replacement of H2O in the medium by D2O. These observations suggest a correspondence between the intrinsic optical changes and secretory activity in these nerve terminals.  相似文献   

13.
DNA is partly denatured in vitro by applying a force that mechanically separates the two strands of the double helix. Sudden reduction of the imposed displacement triggers spontaneous reannealing of the molecule. The corresponding force signals are measured by optical trapping interferometry for backward steps of various amplitudes and base sequence intervals. The measured signals frequently show plateaus of varying duration at discrete values that are dependent on the base sequence. Additional measurements are performed with proteins bound to the double helix. When the opening fork encounters such a protein during mechanical unzipping, force increases until the protein is ejected. This ejection induces fast release of tension and fast unzipping. Comparing our different measurements, we find that both DNA unzipping and the relaxation of tension in DNA are faster than the formation of the double helix.  相似文献   

14.
The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time–frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth.  相似文献   

15.
Kinetically-resolved absorbance measurements during extended, or steady-state illumination are typically hindered by large, light-induced changes in the light-scattering properties of the material. In this work, a new type of portable spectrophotometer, the Non-Focusing Optical Spectrophotometer (NoFOSpec), is introduced, which reduces interference from light-scattering changes and is in a form suitable for fieldwork. The instrument employs a non-focusing optical component, called a compound parabolic concentrator (CPC), to simultaneously concentrate and homogeneously diffuse measuring and actinic light (from light-emitting diode sources) onto the leaf sample. Light passing through the sample is then collected and processed using a subsequent series of CPCs leading to a photodiode detector. The instrument is designed to be compact, lightweight and rugged for field work. The pulsed measuring beam allows for high sensitivity (typically < 100 ppm noise) and time resolution (∼ 10 μs) measurements in the visible and near infrared spectral regions. These attributes allow high-resolution measurements of signals associated with energization of the thylakoid membrane (the electrochromic shifting of carotenoid pigments), as well as electron transfer, e.g., the 820-nm changes associated with electron transfer through Photosystem I (PS I). In addition, the instrument can be used as a kinetic fluorimeter, e.g., to measure saturation-pulse fluorescence changes indicative of Photosystem II (PS II) quantum efficiency. The instrument is demonstrated by estimating electron and proton fluxes through the photosynthetic apparatus in an intact tobacco leaf, using respectively the saturation-pulse fluorescence changes and dark-interval relaxation kinetics (DIRK) of the electrochromic shift. A linear relationship was found, confirming our earlier results with the laboratory-based diffused-optics flash spectrophotometer, indicating a constant H+/e stoichiometry for linear electron transfer, and suggesting that cyclic electron flow around PS I is either negligible or proportional to linear electron flow. This type of measurement should be useful under field conditions for estimating the extent of PS I cyclic electron transfer, which is proposed to operate under stressed conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Measurements of steady-state light-induced absorbance changes in intact plants are often hindered by interference from large changes in the light-scattering properties of the chloroplasts. In this work we present a new instrument, the diffused-optics flash spectrophotometer (DOFS), which reduces the magnitude of light scattering interference to manageable levels. In this spectrophotometer, the conventional light path is replaced with a set of light-scrambling chambers formed from a highly light-scattering plastic. The main scrambling chamber acts both to homogeneously diffuse as well as to split the measuring beam into sample and reference channels. Since the measuring beam has no defined incident angle, it is essentially 'pre-scattered', and further scattering changes that occur in the sample have minimal effect on the apparent absorbance changes. The combination of a pulsed probe light and differential optics and electronics provides a high signal-to-noise ratio, stable baseline and high time resolution. We also introduce a technique to account for residual scattering changes. Sets of measurements are made with the instrument in optical configurations that are differentially sensitive to light-scattering changes but yield nearly identical absorbance changes. The difference in apparent absorbance spectra taken with the two configurations reveals the spectral shape of the scattering changes without interference from absorbance signals. Spectra of the scattering contributions are then used to eliminate residual scattering interference from kinetic traces. We suggest that DOFS is ideally suited for study of steady-state electron transfer reactions in intact plants.  相似文献   

17.
A technique for rapid measurement of nuclear and cytoplasmic size relationships in mammalian cell populations has been developed. Based on fluorescence staining of either the nucleus alone or in combination with the cytoplasm using two-color fluorescence methods, this technique permits the simultaneous determination of nuclear and cytoplasmic diameters from fluorescence and light-scatter measurements. Cells stained in liquid suspension pass through a flow chamber at a constant velocity, intersecting a laser beam which excites cell fluorescence and causes light scatter. Depending upon which analysis procedure is used, optical sensors measure nuclear fluorescence and light scatter (whole cell size) or two-color nuclear and cytoplasmic fluorescence from individual cells crossing the laser beam. The time durations of signals generated by the nucleus and cytoplasm are converted electronically into signals proportional to the respective diameters and are displayed as frequency distribution hitograms. Illustrative examples of measurements on uniform microspheres, cultured mammalian cells and human exfoliated gynecologic cells are presented.  相似文献   

18.
A direct projection from melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) reaches the primary visual thalamus (dorsal lateral geniculate nucleus; dLGN). The significance of this melanopsin input to the visual system is only recently being investigated. One unresolved question is the degree to which neurons in the dLGN could use melanopsin to track dynamic changes in light intensity under light adapted conditions. Here we set out to address this question. We were able to present full field steps visible only to melanopsin by switching between rod-isoluminant ‘yellow’ and ‘blue’ lights in a mouse lacking cone function (Cnga3-/-). In the retina these stimuli elicited melanopsin-like responses from a subset of ganglion cells. When presented to anaesthetised mice, we found that ~25-30% of visually responsive neurones in the contralateral dLGN responded to these melanopsin-isolating steps with small increases in firing rate. Such responses could be elicited even with fairly modest increases in effective irradiance (32% Michelson contrast for melanopsin). These melanopsin-driven responses were apparent at bright backgrounds (corresponding to twilight-daylight conditions), but their threshold irradiance was strongly dependent upon prior light exposure when stimuli were superimposed on a spectrally neutral ramping background light. While both onset and offset latencies were long for melanopsin-derived responses compared to those evoked by rods, there was great variability in these parameters with some cells responding to melanopsin steps in <1 s. These data indicate that a subset of dLGN units can employ melanopsin signals to detect modest changes in irradiance under photopic conditions.  相似文献   

19.

Background

Recent advances in non-invasive optical, radiographic and μCT imaging provide an opportunity to monitor biological processes longitudinally in an anatomical context. One particularly relevant application for combining these modalities is to study orthopaedic implant infections. These infections are characterized by the formation of persistent bacterial biofilms on the implanted materials, causing inflammation, periprosthetic osteolysis, osteomyelitis, and bone damage, resulting in implant loosening and failure.

Methodology/Principal Findings

An orthopaedic implant infection model was used in which a titanium Kirshner-wire was surgically placed in femurs of LysEGFP mice, which possess EGFP-fluorescent neutrophils, and a bioluminescent S. aureus strain (Xen29; 1×103 CFUs) was inoculated in the knee joint before closure. In vivo bioluminescent, fluorescent, X-ray and μCT imaging were performed on various postoperative days. The bacterial bioluminescent signals of the S. aureus-infected mice peaked on day 19, before decreasing to a basal level of light, which remained measurable for the entire 48 day experiment. Neutrophil EGFP-fluorescent signals of the S. aureus-infected mice were statistically greater than uninfected mice on days 2 and 5, but afterwards the signals for both groups approached background levels of detection. To visualize the three-dimensional location of the bacterial infection and neutrophil infiltration, a diffuse optical tomography reconstruction algorithm was used to co-register the bioluminescent and fluorescent signals with μCT images. To quantify the anatomical bone changes on the μCT images, the outer bone volume of the distal femurs were measured using a semi-automated contour based segmentation process. The outer bone volume increased through day 48, indicating that bone damage continued during the implant infection.

Conclusions/Significance

Bioluminescent and fluorescent optical imaging was combined with X-ray and μCT imaging to provide noninvasive and longitudinal measurements of the dynamic changes in bacterial burden, neutrophil recruitment and bone damage in a mouse orthopaedic implant infection model.  相似文献   

20.
Culturing whole lenses is a frequently used method for studying regulatory events on the lens in controlled environments. The evaluation methods used often fall under two categories, molecular or optical. The main benefit from optical measurements is that they directly detect changes in the lens’ main function, i.e. refracting light. However, these measurements often have rather low resolution or yield results open for subjective interpretation. Here we present a short-term crystalline lens culturing technique combined with a high-resolution optical measuring method. There are two main advantages of using teleost lenses compared to mammalian lenses. Teleost tissue generally has a higher tolerance than mammalian tissue with regard to temperature and nutrient fluctuations. Teleost lenses are structurally more robust and can be excised from the eye without disturbing form or function. The technique is developed for short-term culturing (3 h), however, the lenses appear viable for at least 24 h and longer culturing may be possible. The technique is resistant to small variations in osmolarity and yields quantitative datasets for further analyses and statistical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号