首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type VI secretion system (T6SS) is a versatile molecular weapon used by many bacteria against eukaryotic hosts or prokaryotic competitors. It consists of a cytoplasmic bacteriophage tail‐like structure anchored in the bacterial cell envelope via a cytoplasmic baseplate and a periplasmic membrane complex. Rapid contraction of the sheath in the bacteriophage tail‐like structure propels an inner tube/spike complex through the target cell envelope to deliver effectors. While structures of purified contracted sheath and purified membrane complex have been solved, because sheaths contract upon cell lysis and purification, no structure is available for the extended sheath. Structural information about the baseplate is also lacking. Here, we use electron cryotomography to directly visualize intact T6SS structures inside Myxococcus xanthus cells. Using sub‐tomogram averaging, we resolve the structure of the extended sheath and membrane‐associated components including the baseplate. Moreover, we identify novel extracellular bacteriophage tail fiber‐like antennae. These results provide new structural insights into how the extended sheath prevents premature disassembly and how this sophisticated machine may recognize targets.  相似文献   

2.
Contractile tail bacteriophages, or myobacteriophages, use a sophisticated biomolecular structure to inject their genome into the bacterial host cell. This structure consists of a contractile sheath enveloping a rigid tube that is sharpened by a spike‐shaped protein complex at its tip. The spike complex forms the centerpiece of a baseplate complex that terminates the sheath and the tube. The baseplate anchors the tail to the target cell membrane with the help of fibrous proteins emanating from it and triggers contraction of the sheath. The contracting sheath drives the tube with its spiky tip through the target cell membrane. Subsequently, the bacteriophage genome is injected through the tube. The structural transformation of the bacteriophage T4 baseplate upon binding to the host cell has been recently described in near‐atomic detail. In this review we discuss structural elements and features of this mechanism that are likely to be conserved in all contractile injection systems (systems evolutionary and structurally related to contractile bacteriophage tails). These include the type VI secretion system (T6SS), which is used by bacteria to transfer effectors into other bacteria and into eukaryotic cells, and tailocins, a large family of contractile bacteriophage tail‐like compounds that includes the P. aeruginosa R‐type pyocins.  相似文献   

3.
The Type VI secretion system (T6SS) is a widespread macromolecular structure that delivers protein effectors to both eukaryotic and prokaryotic recipient cells. The current model describes the T6SS as an inverted phage tail composed of a sheath‐like structure wrapped around a tube assembled by stacked Hcp hexamers. Although recent progress has been made to understand T6SS sheath assembly and dynamics, there is no evidence that Hcp forms tubes in vivo. Here we show that Hcp interacts with TssB, a component of the T6SS sheath. Using a cysteine substitution approach, we demonstrate that Hcp hexamers assemble tubes in an ordered manner with a head‐to‐tail stacking that are used as a scaffold for polymerization of the TssB/C sheath‐like structure. Finally, we show that VgrG but not TssB/C controls the proper assembly of the Hcp tubular structure. These results highlight the conservation in the assembly mechanisms between the T6SS and the bacteriophage tail tube/sheath.  相似文献   

4.
The tail of bacteriophage T4 undergoes large structural changes upon infection while delivering the phage genome into the host cell. The baseplate is located at the distal end of the contractile tail and plays a central role in transmitting the signal to the tail sheath that the tailfibers have been adsorbed by a host bacterium. This then triggers the sheath contraction. In order to understand the mechanism of assembly and conformational changes of the baseplate upon infection, we have determined the structure of an in vitro assembled baseplate through the three-dimensional reconstruction of cryo-electron microscopy images to a resolution of 3.8 Å from electron micrographs. The atomic structure was fitted to the baseplate structure before and after sheath contraction in order to elucidate the conformational changes that occur after bacteriophage T4 has attached itself to a cell surface. The structure was also used to investigate the protease digestion of the assembly intermediates and the mutation sites of the tail genes, resulting in a number of phenotypes.  相似文献   

5.
Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450?? diameter icosahedral head and a 2000??-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4?? resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3?? resolution. Despite low sequence identity between these proteins, all of these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.  相似文献   

6.
The structure of bacteriophages from different groups is presented based on the data obtained by the three-dimensional reconstruction, optical diffraction and filtration and electron microscopy techniques. The study made possible to suggest the scheme for the mechanism of sheath molecules rearrangement at contraction of bacteriophage tail sheath, the model of bacteriophage FI-1 connector. The structural elements for difference and relation of various bacteriophages are demonstrated.  相似文献   

7.
The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non‐contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo‐electron microscopy reconstructions of the tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.  相似文献   

8.
Tovkach  F. I. 《Microbiology》2002,71(1):65-71
Structural organization of the temperate bacteriophage ZF40 of Erwinia carotovora was studied. Phage ZF40 proved to be a typical member of the Myoviridae family (morphotype A1). Phage particles consist of an isometric head 58.3 nm in diameter and a contractile 86.3-nm-long tail with a complex basal plate and short tail fibers (31.5 nm). Phage tail sheath, a truncated cone in shape, is characterized by specific packaging of structural subunits. The ZF40 phage genome is 45.8 kb in size, as determined by restriction analysis, and contains DNA cohesive ends. The ZF40 phage ofErwinia carotovora is assumed to be a new species of bacteriophages specific for enterobacteria.  相似文献   

9.
The tail of bacteriophage T4 consists of a contractile sheath surrounding a rigid tube and terminating in a multiprotein baseplate, to which the long and short tail fibers of the phage are attached. Upon binding of the fibers to their cell receptors, the baseplate undergoes a large conformational switch, which initiates sheath contraction and culminates in transfer of the phage DNA from the capsid into the host cell through the tail tube. The baseplate has a dome-shaped sixfold-symmetric structure, which is stabilized by a garland of six short tail fibers, running around the periphery of the dome. In the center of the dome, there is a membrane-puncturing device, containing three lysozyme domains, which disrupts the intermembrane peptidoglycan layer during infection.  相似文献   

10.
Valentine, Artrice F. (Georgetown University, Washington, D.C.), Peter K. Chen, Rita R. Colwell, and George B. Chapman. Structure of a marine bacteriophage as revealed by the negative-staining technique. J. Bacteriol. 91:819-822. 1966.-The morphology of a marine bacteriophage has been determined by negative-staining techniques and electron microscopy. The virus possesses a head, 600 A in diameter, and a tail which may be from 860 to 1,000 A in lenght. No tail sheath is seen. The appearance of the terminal tail structure is discussed.  相似文献   

11.
Conformational changes in bacteriophage tail proteins after heating and ionic strength alteration leading to dissociation of tail sheath have been studied using protein fluorescence, differential scanning microcalorimetry and electron microscopy methods. Autonomous structural changes in tube-baseplate proteins have been revealed. They take place under the same conditions as those which release the bonds holding the sheath protein subunits to those of the tube in isolated sheathed tails. The conformational changes in the tube-baseplates are reversible similarly to the process of assembly and disassembly of the extended sheath. Morphological changes in the tube have been found at the temperature above the transition registered by protein fluorescence but not by calorimetry. This suggests that revealed spectral alterations reflect changes in quaternary structure of tail tube in particular.  相似文献   

12.
In Pseudomonas aeruginosa three type VI secretion systems (T6SSs) coexist, called H1‐ to H3‐T6SSs. Several T6SS components are proposed to be part of a macromolecular complex resembling the bacteriophage tail. The T6SS protein HsiE1 (TagJ) is unique to the H1‐T6SS and absent from the H2‐ and H3‐T6SSs. We demonstrate that HsiE1 interacts with a predicted N‐terminal α‐helix in HsiB1 (TssB) thus forming a novel subcomplex of the T6SS. HsiB1 is homologous to the Vibrio cholerae VipA component, which contributes to the formation of a bacteriophage tail sheath‐like structure. We show that the interaction between HsiE1 and HsiB1 is specific and does not occur between HsiE1 and HsiB2. Proteins of the TssB family encoded in T6SS clusters lacking a gene encoding a TagJ‐like component are often devoid of the predicted N‐terminal helical region, which suggests co‐evolution. We observe that a synthetic peptide corresponding to the N‐terminal 20 amino acids of HsiB1 interacts with purified HsiE1 protein. This interaction is a common feature to other bacterial T6SSs that display a TagJ homologue as shown here with Serratia marcescens. We further show that hsiE1 is a non‐essential gene for the T6SS and suggest that HsiE1 may modulate incorporation of HsiB1 into the T6SS.  相似文献   

13.
Purposeful switching among different conformational states exerts self-control in the construction and action of protein assemblies. Quasi-equivalence, conceived to explain icosahedral virus structure, arises by differentiation of identical protein subunits into different conformations that conserve essential bonding specificity. Mechanical models designed to represent the energy distribution in the structure, rather than just the arrangement of matter, are used to explore flexibility and self-controlled movements in virus particles. Information about the assembly of bacterial flagella, actin, tobacco mosaic virus and the T4 bacteriophage tail structure show that assembly can be controlled by switching the subunits from an inactive, unsociable form to an active, associable form. Energy to drive this change is provided by the intersubunit bonding in the growing structure; this self-control of assembly by conformational switching is called "autostery", by homology with allostery. A mechanical model of the contractile T4 tail sheath has been constructed to demonstrate how self-controlled activation of a latent bonding potential can drive a purposeful movement. The gradient of quasi-equivalent conformations modelled in the contracting tail sheath has suggested a workable mechanism for self-determination of tail tube length. Concerted action by assemblies of identical proteins may often depend on individually differentiated movements.  相似文献   

14.
The Type VI secretion system (T6SS) is a versatile machine that delivers toxins into either eukaryotic or bacterial cells. At a molecular level, the T6SS is composed of a membrane complex that anchors a long cytoplasmic tubular structure to the cell envelope. This structure is thought to resemble the tail of contractile bacteriophages. It is composed of the Hcp protein that assembles into hexameric rings stacked onto each other to form a tube similar to the phage tail tube. This tube is proposed to be wrapped by a structure called the sheath, composed of two proteins, TssB and TssC. It has been shown using fluorescence microscopy that the TssB and TssC proteins assemble into a tubular structure that cycles between long and short conformations suggesting that, similarly to the bacteriophage sheath, the T6SS sheath undergoes elongation and contraction events. The TssB and TssC proteins have been shown to interact and a specific α-helix of TssB is required for this interaction. Here, we confirm that the TssB and TssC proteins interact in enteroaggregative E. coli. We further show that this interaction requires the N-terminal region of TssC and the conserved α-helix of TssB. Using site-directed mutagenesis coupled to phenotypic analyses, we demonstrate that an hydrophobic motif located in the N-terminal region of this helix is required for interaction with TssC, sheath assembly and T6SS function.  相似文献   

15.
Some properties of bacteriophage phi T isolated from the vaccine strain Bordetella pertussis Tohama phase I and propagated in Bordetella parapertussis 504 cells are presented. Phage phi T belongs to the IV group in accordance with Tikhonenko classification. The diameter of head and length of noncontractile tail sheath are 49.5 +/- 0.5 and 145 +/- 7 nm, respectively. Diameter of the tail sheath is 3.2 +/- 0.6 nm. Molecular mass of the phage DNA is 37 +/- 3 kb. Population of phi T phage is polymorphous and consists of particles the genomes or which vary from each other by the "insert" located 6.8 +/- 0.6 kb from the end of molecule. The blot hybridization has demonstrated that the bacteriophage genome is not inserted into the chromosome of the lysogenic strain. Autonomous location of the phage genome in the host cell is suggested. The temperature and hydrogen ions concentration effects on bacteriophage phi T stability were studied. The conditions for phage suspension storage are described.  相似文献   

16.
Pyocin R1, a bacteriocin of Pseudomonas aeruginosa, is a protein particle shaped like a bacteriophage tail composed of a contractile sheath, core, baseplate and tail fibers. Alkaline treatment with sodium carbonate caused sheath contraction without considerable disassembly of other components. Circular dichroism (CD) spectra of pyocin R1 before and after the treatment, and of isolated sheath, were measured in wavelength regions around 220 and 290 nm at neutral pH. The alkaline treatment caused a red shift of the minimum from 208 nm to 212 nm. A marked difference in the CD spectrum was found in the near-ultraviolet region. THe difference is considered to be mainly due to a CD spectra change of tryptophan residues in the sheath subunits.  相似文献   

17.
The baseplate of bacteriophage T4 is a multiprotein molecular machine that controls host cell recognition, attachment, tail sheath contraction and viral DNA ejection. We report here the three-dimensional structure of the baseplate-tail tube complex determined to a resolution of 12 A by cryoelectron microscopy. The baseplate has a six-fold symmetric, dome-like structure approximately 520 A in diameter and approximately 270 A long, assembled around a central hub. A 940 A-long and 96 A-diameter tail tube, coaxial with the hub, is connected to the top of the baseplate. At the center of the dome is a needle-like structure that was previously identified as a cell puncturing device. We have identified the locations of six proteins with known atomic structures, and established the position and shape of several other baseplate proteins. The baseplate structure suggests a mechanism of baseplate triggering and structural transition during the initial stages of T4 infection.  相似文献   

18.
The contractile tail of bacteriophage T4 undergoes major structural transitions when the virus attaches to the host cell surface. The baseplate at the distal end of the tail changes from a hexagonal to a star shape. This causes the sheath around the tail tube to contract and the tail tube to protrude from the baseplate and pierce the outer cell membrane and the cell wall before reaching the inner cell membrane for subsequent viral DNA injection. Analogously, the T4 tail can be contracted by treatment with 3 M urea. The structure of the T4 contracted tail, including the head-tail joining region, has been determined by cryo-electron microscopy to 17 A resolution. This 1200 A-long, 20 MDa structure has been interpreted in terms of multiple copies of its approximately 20 component proteins. A comparison with the metastable hexagonal baseplate of the mature virus shows that the baseplate proteins move as rigid bodies relative to each other during the structural change.  相似文献   

19.
The phiKZ virus is one of the largest known bacteriophages. It infects Pseudomonas aeruginosa, which is frequently pathogenic in humans, and, therefore, has potential for phage therapy. The phiKZ virion consists of an approximately 1450 A diameter icosahedral head and an approximately 2000 A long contractile tail. The structure of the phiKZ tail has been determined using cryo-electron microscopy. The phiKZ tail is much longer than that of bacteriophage T4. However, the helical parameters of their contractile sheaths, surrounding their tail tubes, are comparable. Although there is no recognizable sequence similarity between the phiKZ and T4 tail sheath proteins, they are similar in size and shape, suggesting that they evolved from a common ancestor. The phiKZ baseplate is significantly larger than that of T4 and has a flatter shape. Nevertheless, phiKZ, similar to T4, has a cell-puncturing device in the middle of its baseplate.  相似文献   

20.
Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号