首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of atrial natriuretic peptide (ANP-28), brain natriuretic peptide (BNP-32) and C-type natriuretic peptide (CNP-22) on body temperature were investigated in rats. Intracerebroventricular administration of each peptide in doses of 400 or 1000 ng caused a dose-related elevation in colon temperature 30 and 60 min after injection. A 40 ng dose of ANP-28 was also hyperthermic at 60 min. An intramuscular (i.m.) injection of noraminophenazone (a cyclooxygenase inhibitor) abolished the natriuretic peptide-induced hyperthermia. The results show that natriuretic peptides may participate in thermoregulatory processes in the central nervous system, and that their hyperthermic effect may be mediated via a cyclooxygenase-involved pathway.  相似文献   

2.
Summary The renal and in vitro vascular effects of atrial natriuretic peptides have been examined in seveal species of fish. However, comparatively few investigations have described the effects of these peptides on the cardiovascular system in vivo. In the present experiments the dorsal aorta and urinary bladder were cannulated and the effects of atrial natriuretic peptides from rat and eel were monitored in conscious trout during bolus injection or continuous atrial natriuretic peptide infusion. The results show that the initial pressor effect of atrial natriuretic peptides is independent of environmental salinity adaptation (fresh or seawater) and the chemical form of atrial natriuretic peptide injected, but it is affected by the rate of atrial natriuretic peptide administration. This pressor response, and the accompanying diuresis, are mediated through -adrenergic activation. Continuous infusion of either rat or eel atrial natriuretic peptide produces a steady fall in mean arterial blood pressure, which is temporally preceded by an increase in heart rate and a decrease in pulse pressure. Diuresis induced by atrial natriuretic peptides is only partially sustained during continuous infusion. Propranolol partially blocks the increase induced in heart rate by atrial natriuretic peptides, but does not affect either pulse pressure or mean arterial pressure. Propranolol significantly increases urine flow in saline-infused animals but has no apparent effect on animals subjected to infusions of atrial natriuretic peptides. These results indicate that there are multiple foci for the action of atrial natriuretic peptides in trout and that in many instances the effects of atrial natriuretic peptides are mediated through secondary effector systems.Abbreviations ANP atrial natriuretic peptide - bw body weight - PBS phosphate-buffered saline  相似文献   

3.
Following the discovery of the natriuretic effect of atrial extract, our laboratory attempted to dissect the possible physiological role of atrial natriuretic factor. Initial micropuncture experiments demonstrated that the reduction of tubular sodium reabsorption was localized in the medullary collecting duct, a nephron site in which sodium transport was known to be inhibited after acute hypervolemia. Partial removal of the endogenous source of atrial natriuretic factor was associated with a reduced renal response to hypervolemia, confirming that the factor is causally involved in acute sodium balance. In vitro incubation of atrial tissue was used to investigate mechanisms of release of atrial natriuretic factor. It was found that agonists known to activate the intracellular polyphosphoinositide system in other tissues were effective in releasing natriuretic activity from the atria into the incubation medium. To determine whether atrial natriuretic factor might play a role in hypertension, atrial natriuretic content was measured in spontaneously hypertensive rats and their normotensive controls. Hypertension was associated with increased content. Since the renal response to exogenous factor was not impaired in these animals, we suggested that the increased content might play a compensatory role. Our early studies thus indicated that atrial natriuretic factor was a previously unrecognized hormone involved in cardiovascular regulation.  相似文献   

4.
Plasma levels of atrial natriuretic peptide (ANP) and renal responses to ANP were examined in rats with chronic cardiac failure produced by coronary artery ligation and in sham-operated controls. Plasma ANP levels were elevated in the rats with severe cardiac failure as compared with the controls (P less than 0.001). ANP injections at the doses of 1, 5, 25 and 50 micrograms/kg increased water and sodium excretion significantly at all but the lowest dose in the controls; only the two largest doses caused clear diuresis and natriuresis in the heart failure group. The diuretic and natriuretic effects of ANP were significantly weaker at the doses of 5 and 25 micrograms/kg in the rats with heart failure as compared with the controls. We conclude, that natriuretic and diuretic effects of ANP are attenuated in this chronic heart failure mode.  相似文献   

5.
The natriuretic peptides (NPs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), have vasoactive functions that concern humans and most animals, but their specific effects on cerebral circulation are poorly understood. We therefore examined the responsiveness of cerebral arteries to different doses of the natriuretic peptides in animals and humans. We conducted a dose-response experiment in guinea pigs (in vitro) and a double-blind, three-way cross-over study in healthy volunteers (in vivo). In the animal experiment, we administered cumulative doses of NPs to pre-contracted segments of cerebral arteries. In the main study, six healthy volunteers were randomly allocated to receive two intravenous doses of ANP, BNP or CNP, respectively, over 20 min on three separate study days. We recorded blood flow velocity in the middle cerebral artery (VMCA) by transcranial Doppler. In addition, we measured temporal and radial artery diameters, headache response and plasma concentrations of the NPs. In guinea pigs, ANP and BNP but not CNP showed significant dose-dependent relaxation of cerebral arteries. In healthy humans, NP infusion had no effect on mean VMCA, and we found no difference in hemodynamic responses between the NPs. Furthermore, natriuretic peptides did not affect temporal and radial artery diameters or induce headache. In conclusion, natriuretic peptides in physiological and pharmacological doses do not affect blood flow velocity in the middle cerebral artery or dilate extracerebral arteries in healthy volunteers.  相似文献   

6.
The stimulatory effect of vasomodulatory natriuretic peptide hormones on macrophages and peripheral blood leucocytes in mammals is well-established. However, the relationship in lower vertebrates has not been characterised. Expression of atrial natriuretic peptide, ventricular natriuretic peptide and C-type natriuretic peptide-1, and the guanylyl cyclase-linked (GC) natriuretic peptide receptor-A and -B-type receptors (NPR-A and NPR-B, respectively) was determined by PCR from the mRNA of rainbow trout head kidney leucocytes yielding gene fragments with 100% homology to the same respective natriuretic peptide and NPR-A and -B sequences obtained from other rainbow trout tissues. A mixed population of isolated rainbow trout head kidney leucocytes was stimulated in vitro with trout atrial natriuretic peptide (specific NPR-A agonist) and trout C-type natriuretic peptide (NPR-A and -B agonist) as well as the cGMP agonist 8-bromo-cGMP or the GC inhibitor 8-bromo-phenyl-eutheno-cGMP. Respiratory burst was stimulated by trout atrial natriuretic peptide, trout C-type natriuretic peptide-1 and 8-bromo-cGMP in a dose dependant manner with the highest activity as a result of stimulation with trout C-type natriuretic peptide-1 in excess of that achieved by phorbol myristate acetate (PMA). Equimolar concentrations of the inhibitor, inhibited the respiratory burst caused by the natriuretic peptides and 8-bromo-cGMP. The natriuretic peptide receptors on rainbow trout head kidney leucocytes appear to have a stimulatory function with regard to respiratory burst that is activated through a cGMP second messenger pathway and the natriuretic peptides expressed in the head kidney leucocytes may well act in a paracrine/autocrine manner.  相似文献   

7.
Studies in single cardiac muscle cells have demonstrated that atrial natriuretic factor decreases the L-type calcium current. Recent investigations in human atrial cells have also demonstrated that atrial natriuretic factor causes a voltage-dependent reduction in sodium channel activity and thus may reduce intracellular calcium via decreased activity of the sodium-calcium exchange mechanism. By reducing intracellular calcium, atrial natriuretic factor may have a negative inotropic effect on cardiac muscle. To characterize the effect of atrial natriuretic factor on the development of force, we studied the force-sarcomere length relationship in 11 right ventricular rat trabeculae, both before and after exposure of the muscles to increasing concentrations of atrial natriuretic factor. Sarcomere length was measured by laser diffraction techniques and controlled by a servomotor system. The addition of atrial natriuretic factor to the superfusion solution, at concentrations of 10(-9)-10(-7) M, increased stimulus threshold, reduced peak twitch force in a dose-dependent manner by 38% (maximum), and reduced time to peak twitch force by 15% (maximum). Incubation of muscle preparations with concentrations of atrial natriuretic factor below 10(-9) M had no effect on force generation. The negative inotropic effect of atrial natriuretic factor was associated with a change in the shape of the force-sarcomere length relationship, similar to a reduction of the extracellular calcium concentration. ANF (10(-7) M) had no effect on the rate of decay of force following post extra-systolic potentiation. These observations are consistent with the assumption that the negative inotropic effect of atrial natriuretic factor is mediated by reduction of calcium entry into the cardiac cell.  相似文献   

8.
Recent studies have demonstrated receptors for atrial natriuretic factor on endothelium of intracerebral vessels. The physiological role of these receptors is not known. The present study was undertaken to determine whether atrial natriuretic factor has an effect on blood-brain barrier permeability to protein and ions using horseradish peroxidase and lanthanum as markers of permeability alterations. This study does not demonstrate a significant effect of atrial natriuretic factor on blood-brain barrier permeability mechanisms in steady states.  相似文献   

9.
In isolated rat atria a 10 degrees C increase in temperature approximately doubled the output of atrial natriuretic peptide during relaxation and stretch. The effect was not due to the increased rate of contraction. Increasing the osmolality of the superfusate within the physiological range (290 to 320 m osmols) with sodium, potassium or glucose had no appreciable effect on the release of atrial natriuretic peptide.  相似文献   

10.
Administration of a newly discovered second atrial peptide, iso-atrial natriuretic peptide (or iso-rANP(1-45) for the rat), caused hypotension, decreased heart rate, diuresis, and increased renal excretion of Na+, K+, and Cl- in the anesthetized rat. Bolus injections of chemically synthetic iso-rANP(1-45) had circulatory and diuretic activity equal to or greater than rANP(99-126) but, at low doses, a lesser effect on renal electrolyte excretion. The synthetic peptide fragment, iso-rANP(17-45), analogous in structure to rANP(99-126), had attenuated activity on the circulation, and at low doses, attenuated activity on the kidney. At higher doses, where renal responses to rANP(99-126) were less (downside of a biphasic response), both iso-rANP(1-45) and (17-45) had greater effects on water and electrolyte excretion than rANP(99-126). Injections of iso-rANP(1-45) and (17-45) increased hematocrit, whereas rANP(99-126) did not; furthermore, unlike rANP(99-126), iso-rANP did not affect arterial plasma Na+ concentration. The heart produces at least two genetically different atrial natriuretic peptides which affect the circulation and salt and water balance.  相似文献   

11.
R B Moss  M G Golightly 《Peptides》1991,12(4):851-854
The presence of atrial natriuretic peptide (ANP) binding sites in the thymic cortex, medulla, and splenic white pulp suggests that this peptide may have immunoregulatory activity. We examined the effect of ANP on human natural killer (NK) cell activity. ANP significantly augmented NK cell cytotoxicity after twenty-four hours of incubation but had no effect on NK activity after short-term incubations of one hour. In addition, atrial natriuretic peptide did not effect the expression of natural killer or T cell surface markers. This study demonstrates that atrial natriuretic fragment 4-28 enhances natural killer cell activity.  相似文献   

12.
High affinity binding sites for brain natriuretic peptide were characterized in the rat superior cervical ganglia by quantitative autoradiography. In addition, the peptide increased the formation of cyclic GMP in the ganglia in vitro. Brain natriuretic peptide displaced atrial natriuretic peptide from its binding sites. Our results suggest that brain natriuretic peptide and atrial natriuretic peptide may share physiologically active receptors in sympathetic ganglia. Brain natriuretic peptide may modulate the synaptic transmission in sympathetic ganglia, in addition or in conjunction with atrial natriuretic peptide.  相似文献   

13.
The inhibitory effect of atrial natriuretic peptide on the myotropic action of phenylephrine on superior mesenteric artery and thoracic aorta rings was studied to test the hypothesis that this peptide interferes with the mobilization of intra- or extra-cellular calcium produced by vasoconstrictor agents. In the absence of calcium in the bathing solution, phenylephrine (10(-6) M) produced a residual effect, which was antagonized in a concentration-dependent manner by the atrial peptide in both mesenteric artery and aorta rings. When calcium (2.5 mM) was added to the bathing solution after the response to phenylephrine in the absence of calcium, a further increase in the tonus of the tissue was observed. This effect was also antagonized by atrial natriuretic peptide in a dose-dependent manner in the two tissues. These results suggest that atrial natriuretic peptide inhibits the effect of vasoconstrictor agents by functionally interfering with the mobilization of intra- and extra-cellular calcium produced by these vasoconstrictors.  相似文献   

14.
Intracerebroventricular administration of either rat atrial natriuretic factor (99-126) or dopamine to conscious male hydrated rats resulted in an increase in urinaryvolume and sodium excretion. This activity was prevented, in both cases, by nonselective dopamine antagonist haloperidol (2.5 or 1.25 mg/kg sc, 18 and 2 hr before intracerebroventricular administration of atrial natriuretic factor). Our findings suggest that atrial natriuretic factor exerts its centrally mediated effects on sodium and water metabolism, at least in part, via a dopaminergic mechanism.  相似文献   

15.
Bovine adrenal glomerulosa cells were incubated with 32PO4 and either angiotensin II, atrial natriuretic peptide, or both. Solubilized cells were subjected to one-dimensional gel electrophoresis. Autoradiography and scintillation counting of gels showed that angiotensin increased labeling of one band, with an apparent molecular weight of 17,600. Atrial natriuretic peptide inhibited the angiotensin effect. Together with earlier results, this observation suggests that atrial natriuretic peptide affects aldosteronogenesis at the level of protein phosphorylation, but not by altering angiotensin receptors, calcium fluxes or phosphoinositide metabolism.  相似文献   

16.
The acute effects of ethanol on plasma atrial natriuretic peptide levels were investigated in 4 clinically healthy males, aged 24-26 years, consumed either 750 ml of water as a control study, or the same beverage with 1 ml/kg alcohol added, which increased the plasma alcohol concentration to 99.12 +/- 15.10 mg/dl at 60 min. Plasma atrial natriuretic peptide levels were significantly higher in the alcohol study compared to the control study at each time point (10, 20, 30, 60, 120 min after drinking onset), and with a peak at 10 min. Atrial natriuretic peptide levels showed a positive significant correlation with plasma antidiuretic hormone in the control group, while no relationship was found between the two peptides in the alcohol study. Moreover, a significant correlation exists between plasma atrial natriuretic peptide levels and systolic arterial blood pressure, and heart rate, and between the variations in atrial natriuretic peptide values and the variations in plasma sodium, serum ethanol, and plasma osmolality in the alcohol study. Acute ethanol intake causes an increase in urinary volume, and a decrease in urinary potassium excretion and urinary osmolality, and no change in urinary sodium excretion. These data suggest that acute ethanol administration causes a rapid increase in plasma levels of atrial natriuretic peptide, which could be an important factor of ethanol-induced diuresis. The main mechanisms for increased atrial natriuretic peptide release from atria after acute ethanol ingestion seem to be atrial stretch, due to the increase in arterial blood pressure, in heart rate, in sympathetic tone, and in plasma osmolality, and to a direct secretory effect by antidiuretic hormone.  相似文献   

17.
Three types of antihuman atrial natriuretic peptide antiserum were obtained. From the study of cross-reactivity to human atrial natriuretic peptide fragments, it was suggested that antisera-1, -2, and -3 are mostly specific to 1-28, 5-25, and the ring structure, respectively. The estimated values of this hormone were significantly lower in the order of antisera-1, -2, and -3. Moreover, high performance liquid chromatographic study showed that various types of fragments of atrial natriuretic peptide exist in human plasma. These findings suggested that the highly specific antiserum to 1-28 human atrial natriuretic peptide such as antiserum-1 should be used to estimate the 1-28 human atrial natriuretic peptide levels in human plasma. From the study by using antiserum-1, it was concluded that the plasma human atrial natriuretic peptide increased in essential hypertensives, and in patients with primary aldosteronism, chronic renal failure, and malignant hypertension. Regarding the pathophysiological significance of increased plasma atrial natriuretic peptide, it is unlikely that this plays an important role in the etiology of essential hypertension or other hypertensive diseases, because the plasma level of this hormone is elevated in these patients. The increase of plasma atrial natriuretic peptide level in these patients should be considered to be a secondary or compensatory reaction to high blood pressure.  相似文献   

18.
The influence of prolonged high salt intake on intravascular volume, right atrial pressure, plasma atrial natriuretic factor, and extra-atrial tissue (lung, kidney, and liver) COOH- and NH2-terminal atrial natriuretic factor content was investigated in normotensive rats. Despite prolonged high salt (8% NaCl) intake for 5 weeks, total intravascular volume was not impaired. However, right atrial pressure was increased by 54% (p less than 0.01) after salt loading. Although this increment in right atrial pressure should favor atrial natriuretic factor release after NaCl intake, plasma atrial natriuretic factor (COOH-terminal) concentrations markedly decreased from 97.8 +/- 27 to 38.9 +/- 8 pg/mL. Sodium and circulatory homeostasis was, however, well preserved. The lungs contained the highest levels of COOH- and NH2-terminal atrial natriuretic factor. Salt loading resulted in increased concentrations of low as well as high molecular weight atrial natriuretic factor in the lung but not in the kidney or the liver. Our study indicates a limited role of atrial natriuretic factor in adaptation to prolonged salt consumption in rats. Dissociation between right atrial pressure and plasma atrial natriuretic factor after salt intake implicates other factors regulating circulating peptide levels. Prolonged salt intake increases lung generation of atrial natriuretic factor.  相似文献   

19.
Synthetic atrial natriuretic factor (ANF) inhibited aldosterone production by suspensions of bovine adrenal glomerulosa cells. Inhibition by ANF was most pronounced when basal aldosterone production was measured. The effects of angiotensin II (AII), N6,O2'-dibutyryl-adenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP), and elevated potassium were also inhibited by ANF. Inhibition could be partially overcome by high doses of agonist. Inhibition was localized to the early pathway of aldosteronogenesis, to a step before cholesterol side-chain cleavage. ANF had no effect on binding of AII to receptors, on the stimulation by AII of phospholipid turnover, or on the alteration by AII of calcium fluxes.  相似文献   

20.
CaCl2 inhibited ATP-stimulated guanylate cyclase activity, but had little effect on basal and atrial natriuretic factor-stimulated guanylate cyclase activity in rat lung membranes. LaCl3 had similar effects as CaCl2 on basal and stimulated guanylate cyclase activity. LiCl and other monovalent salts inhibited ATP-stimulated guanylate cyclase activity more than basal enzyme activity. However, atrial natriuretic factor somehow stabilized the enzyme against the inhibitory effect of LiCl. These results suggest that ATP and atrial natriuretic factor activate the enzyme through different mechanisms. Since the effect of calcium on guanylate cyclase activity is different from that of monovalent salts and can be mimicked by lanthanum, it may be mediated by a specific calcium binding site or binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号