首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amounts of glutamate metabolizing enzymes such as glutamate dehydrogenase (GDH), glutamine synthetase (GS), GS-like protein (GSLP), and phosphate-activated glutaminase (PAG) were compared in prefrontal cortex of control subjects and patients with Alzheimer disease (AD). The target proteins were quantified by ECL-Western immunoblotting in extracts from brain tissue prepared by two different techniques separating enzymes preferentially associated with cytoplasm (GDH I and II isoenzymes, GS, and partially GSLP) and membrane (GDH III, PAG, and partially GSLP) fractions. Amounts of all listed enzymes were found significantly increased in the patient group compared with controls. Some links between the measured values were observed in the control, but not in the AD patient group. The results may suggest for the pathological interruption of regulatory relations between distinct enzymes of glutamate metabolism in brain of AD patients.  相似文献   

2.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by involuntary body movement, cognitive impairment and psychiatric disturbance. A polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein is the genetic cause of HD. Htt protein interacts with a wide variety of proteins, and htt mutation causes cell signaling alterations in various neurotransmitter systems, including dopaminergic, glutamatergic, and cannabinoid systems, as well as trophic factor systems. This review will overview recent findings concerning htt-promoted alterations in cell signaling that involve different neurotransmitters and trophic factor systems, especially involving mGluR1/5, as glutamate plays a crucial role in neuronal cell death. The neuronal cell death that takes place in the striatum and cortex of HD patients is the most important factor underlying HD progression. Metabotropic glutamate receptors (mGluR1 and mGluR5) have a very controversial role in neuronal cell death and it is not clear whether mGluR1/5 activation either protects or exacerbates neuronal death. Thus, understanding how mutant htt protein affects glutamatergic receptor signaling will be essential to further establish a role for glutamate receptors in HD and develop therapeutic strategies to treat HD.  相似文献   

3.
Accumulating evidence suggests that the conversion of Aβ peptides to soluble, neurotoxic polymers is the key event in the development of Alzheimer’s disease (AD). Moreover, interactions between Aβ peptides and neuronal membrane lipids likely play a vital role in developing the neurotoxicity associated with AD. The aim of this study is to assess whether lipid matrix of neuronal membranes is affected by the accumulation of Aβ peptides in double transgenic mouse model of AD expressing both mutant human β-amyloid precursor protein (APP) and presenilin 1 (PS1). We apply high pressure liquid chromatography with an evaporative light scattering detector to compare levels of cholesterol, galactocerebrosides, and phospholipid subclasses simultaneously in cortex samples between AD double transgenic mice at 4 months of age when Aβ production and amyloid plaque deposition is just beginning and at 9 months, when there is advanced Aβ levels and plaque deposition compared to age-matched wild-type (B6/SJL) mice. Both cholesterol (CL) and phospholipids (PL) are significantly lower in 9-month-old AD mice than the same age of B6/SJL mice. Among PL subclasses, phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC) are selectively reduced in 9-month-old AD mice. The molar ratios of CL to PL in 9-month-old AD mice (1.19 ± 0.27) were significantly higher than those of 9-month-old B6/SJL mice (0.81 ± 0.08). In keeping with decreased levels of PL, there are also significant reductions of very long-chain n-3 fatty acids (docosahexaenoic acid) and n-6 fatty acid (arachidonic acid) in 9-month-old AD mice. On the other hand, ratios of total n-6 to total n-3 fatty acids were significantly higher in 9-month-old AD mice than in the same age of B6/SJL mice. Taken together, our present data support a role for the interactions of amyloid-β peptide and neuronal membranes in the subsequent development of AD. Special issue article in honor of Dr. George DeVries.  相似文献   

4.
5.
6.

Background and Objective

Counterfactual thinking (CFT) refers to the generation of mental simulations of alternatives to past events, actions and outcomes. CFT is a pervasive cognitive feature in every-day life and is closely related to decision-making, planning and problem-solving – all of which are cognitive processes linked to unimpaired frontal lobe functioning. Huntington’s Disease (HD) is a neurodegenerative disorder characterised by motor, behavioral and cognitive dysfunctions. Because an impairment in frontal and executive functions has been described in HD, we hypothesised that HD patients may have a CFT impairment.

Methods

Tests of spontaneous counterfactual thoughts and counterfactual-derived inferences were administered to 24 symptomatic HD patients and 24 age- and sex-matched healthy subjects.

Results

Our results show a significant impairment in the spontaneous generation of CFT and low performance on the Counterfactual Inference Test (CIT) in HD patients. Low performance on the spontaneous CFT test significantly correlates with impaired attention abilities, verbal fluency and frontal lobe efficiency, as measured by Trail Making Test – Part A, Phonemic Verbal Fluency Test and FAB.

Conclusions

Spontaneous CFT and the use of this type of reasoning are impaired in HD patients. This deficit may be related to frontal lobe dysfunction, which is a hallmark of HD. Because CFT has a pervasive role in patients’ daily lives regarding their planning, decision making and problem solving skills, cognitive rehabilitation may improve HD patients’ ability to analyse current behaviors and future actions.  相似文献   

7.
The human genome is under continuous attack by a plethora of harmful agents. Without the development of several dedicated DNA repair pathways, the genome would have been destroyed and cell death, inevitable. However, while DNA repair enzymes generally maintain the integrity of the whole genome by properly repairing mutagenic and cytotoxic intermediates, there are cases in which the DNA repair machinery is implicated in causing disease rather than protecting against it. One case is the instability of gene-specific trinucleotides, the causative mutations of numerous disorders including Huntington’s disease. The DNA repair proteins induce mutations that are different from the genome-wide mutations that arise in the absence of repair enzymes; they occur at definite loci, they occur in specific tissues during development, and they are age-dependent. These latter characteristics make pluripotent stem cells a suitable model system for triplet repeat expansion disorders. Pluripotent stem cells can be kept in culture for a prolonged period of time and can easily be differentiated into any tissue, e.g., cells along the neural lineage. Here, we review the role of DNA repair proteins in the process of triplet repeat instability in Huntington’s disease and also the potential use of pluripotent stem cells to investigate neurodegenerative disorders.  相似文献   

8.
9.
Huntington’s disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdh Q7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdh Q7/Q111) or homozygous (STHdh Q111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdh Q7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts.  相似文献   

10.
Dopaminergic activity is expected to be altered in patients with Huntington’s disease (HD) and be related to factors like duration and severity of illness or patients’ specific symptomatology like dementia, depression, or psychotic features. We assessed plasma homovanillic acid (pHVA) and plasma prolactin (pPRL), two correlates of dopaminergic activity, in 116 subjects with CAG repeats expansion in the HD gene, 26 presymptomatic (18 females) and 90 with overt symptomatology (43 females). Patients were evaluated using the Unified HD Rating Scale and the Total Functional Capacity Scale. Presence of dementia, depression, and psychotic features were also assessed. The age range of the patients was 22–83 years, duration of illness from 0.5 to 27 years, and CAG repeat number from 34 to 66. A group of 60 age and sex matched healthy subjects served as control group. Plasma PRL in subjects at risk and in neuroleptic-free patients, evaluated separately for males and females, did not differ from controls. Plasma HVA levels did not differ from controls in the group of presymptomatic subjects, but were significantly higher in the patients group. This increase was positively associated mainly with severity of illness and functional capacity of the patients, and not with presence of depression or dementia. Plasma HVA levels may be proven to be a peripheral index of disease progression. Reducing dopaminergic activity may have not only symptomatic, but also neuroprotective effects in HD.  相似文献   

11.

BACKGROUND

Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease causing severe neurodegeneration of the striatum as well as marked cognitive and motor disabilities. Excitotoxicity, caused by overstimulation of NMDA receptors (NMDARs) has been shown to have a key role in the neuropathogenesis of HD, suggesting that targeting NMDAR-dependent signaling may be an effective clinical approach for HD. However, broad NMDAR antagonists are generally poor therapeutics in clinical practice. It has been suggested that GluN2A-containing, synaptically located NMDARs activate cell survival signaling pathways, while GluN2B-containing, primarily extrasynaptic NMDARs trigger cell death signaling. A better approach to development of effective therapeutics for HD may be to target, specifically, the cell-death specific pathways associated with extrasynaptic GluN2B NMDAR activation, while maintaining or potentiating the cellsurvival activity of GluN2A-NMDARs.

OBJECTIVE

This review outlines the role of NMDAR-mediated excitotoxicity in HD and overviews current efforts to develop better therapeutics for HD where NMDAR excitotoxicity is the target.

METHODS

A systematic review process was conducted using the PubMed search engine focusing on research conducted in the past 5-10 years. 235 articles were consulted for the review, with key search terms including “Huntington’s Disease,” “excitotoxicity,” “NMDAR” and “therapeutics.”

RESULTS

A wide range of NMDAR excitotoxicity-based targets for HD were identified and reviewed, including targeting NMDARs directly by blocking GluN2B, extrasynaptic NMDARs and/or potentiating GluN2A, synaptic NMDARs, targeting glutamate release or uptake, or targeting specific downstream cell-death signaling of NMDARs.

CONCLUSION

The current review identifies NMDAR-mediated excitotoxicity as a key player in HD pathogenesis and points to various excitotoxicity-focused targets as potential future preventative therapeutics for HD.
  相似文献   

12.

Background

Huntington’s disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington’s disease gene carriers (premanifest and moderate stage II/III) and controls.

Methods

Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test.

Results

We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington’s disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious.

Conclusions

Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington’s disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington’s disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority of these markers do not differ markedly by disease status.  相似文献   

13.
Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD.  相似文献   

14.
While Huntington’s disease (HD) is classified as a neurological disorder, HD patients exhibit a high incidence of cardiovascular events leading to heart failure and death. In this study, we sought to better understand the cardiovascular phenotype of HD using the BACHD mouse model. The age-related decline in cardiovascular function was assessed by echocardiograms, electrocardiograms, histological and microarray analysis. We found that structural and functional differences between WT and BACHD hearts start at 3 months of age and continue throughout life. The aged BACHD mice develop cardiac fibrosis and ultimately apoptosis. The BACHD mice exhibited adaptive physiological changes to chronic isoproterenol treatment; however, the medication exacerbated fibrotic lesions in the heart. Gene expression analysis indicated a strong tilt toward apoptosis in the young mutant heart as well as changes in genes involved in cellular metabolism and proliferation. With age, the number of genes with altered expression increased with the large changes occurring in the cardiovascular disease, cellular metabolism, and cellular transport clusters. The BACHD model of HD exhibits a number of changes in cardiovascular function that start early in the disease progress and may provide an explanation for the higher cardiovascular risk in HD.  相似文献   

15.
Journal of Evolutionary Biochemistry and Physiology - Huntington’s disease is a hereditary, incurable, neurodegenerative disease characterized by movement disorders—progressive choreic...  相似文献   

16.
The substantia nigra plays important roles in the brain function and is critical in the development of many diseases, particularly Parkinson??s disease. Pathological changes of the substantia nigra have also been reported in other neurodegenerative diseases. Using a quantitative proteomic approach, we investigated protein expressions in the substantia nigra of Alzheimer??s disease, Huntington??s disease, and Multiple sclerosis. The expression level of one hundred and four proteins that were identified in at least three samples of each group were compared with the control group, with nineteen, twenty-two and thirteen proteins differentially expressed in Alzheimer??s diseases, Huntington??s disease and Multiple sclerosis respectively. The result indicates that the substantia nigra also undergoes functional adaption or damage in these diseases.  相似文献   

17.
18.
Alzheimer’s disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and hyperphosphorylated Tau containing neurofibrillary tangles (NFTs) and is associated with neuroinflammation and neurodegeneration. Entorhinal cortex (Brodmann’s area 28) is involved in memory associated functions and is one of the first brain areas targeted to form the neuropathological lesions and also severely affected cortical region in AD. Glia maturation factor (GMF), a central nervous system protein and a proinflammatory molecule is known to be up-regulated in the specific areas of AD brain. Our previous immunohistochemical studies using temporal cortex showed that GMF is expressed in the vicinity of APs and NFTs in AD brains. In the present study, we have analyzed the expression of GMF and its association with APs and NFTs in the entorhinal cortex of AD brains by using immunohistochemistry combined with thioflavin-S fluorescence labeling methods. Results showed that GMF immunoreactive glial cells, glial fibrillary acidic protein labeled reactive astrocytes and ionized calcium binding adaptor molecule-1 labeled activated microglia were increased in the entorhinal cortical layers especially at the sites of 6E10 labeled APs and Tau containing NFTs. In conclusion, increased expression of GMF by the glial cells in the entorhinal cortex region, and the co-localization of GMF with APs and NFTs suggest that GMF may play important proinflammatory roles in the pathogenesis of AD.  相似文献   

19.
BackgroundHuntington’s disease is an inherited neurodegenerative disorder characterised by motor, cognitive and psychiatric disturbances. Patients exhibit other symptoms including sleep and mood disturbances, muscle atrophy and weight loss which may be linked to hypothalamic pathology and dysfunction of hypothalamo-pituitary axes.MethodsWe studied neuroendocrine profiles of corticotropic, somatotropic and gonadotropic hypothalamo-pituitary axes hormones over a 24-hour period in controlled environment in 15 healthy controls, 14 premanifest and 13 stage II/III Huntington’s disease subjects. We also quantified fasting levels of vasopressin, oestradiol, testosterone, dehydroepiandrosterone sulphate, thyroid stimulating hormone, free triiodothyronine, free total thyroxine, prolactin, adrenaline and noradrenaline. Somatotropic axis hormones, growth hormone releasing hormone, insulin-like growth factor-1 and insulin-like factor binding protein-3 were quantified at 06:00 (fasting), 15:00 and 23:00. A battery of clinical tests, including neurological rating and function scales were performed.Results24-hour concentrations of adrenocorticotropic hormone, cortisol, luteinizing hormone and follicle-stimulating hormone did not differ significantly between the Huntington’s disease group and controls. Daytime growth hormone secretion was similar in control and Huntington’s disease subjects. Stage II/III Huntington’s disease subjects had lower concentration of post-sleep growth hormone pulse and higher insulin-like growth factor-1:growth hormone ratio which did not reach significance. In Huntington’s disease subjects, baseline levels of hypothalamo-pituitary axis hormones measured did not significantly differ from those of healthy controls.ConclusionsThe relatively small subject group means that the study may not detect subtle perturbations in hormone concentrations. A targeted study of the somatotropic axis in larger cohorts may be warranted. However, the lack of significant results despite many variables being tested does imply that the majority of them do not differ substantially between HD and controls.  相似文献   

20.
Oxidative stress and mitochondrial dysfunction should play a role in the neurodegeneration in Huntington’s disease (HD). The most consistent finding is decreased activity of the mitochondrial complexes II/III and IV of the respiratory chain in the striatum. We assessed enzymatic activities of respiratory chain enzymes and other enzymes involved in oxidative processes in skin fibroblasts cultures of patients with HD. We studied respiratory chain enzyme activities, activities of total, Cu/Zn- and Mn-superoxide-dismutase, glutathione-peroxidase (GPx) and catalase, and coenzyme Q10 (CoQ10) levels in skin fibroblasts cultures from 13 HD patients and 13 age- and sex-matched healthy controls. When compared with controls, HD patients showed significantly lower specific activities for catalase corrected by protein concentrations (P < 0.01). Oxidized, reduced and total CoQ10 levels (both corrected by citrate synthase (CS) and protein concentrations), and activities of total, Cu/Zn- and Mn-superoxide-dismutase, and gluthatione-peroxidase, did not differ significantly between HD-patients and control groups. Values for enzyme activities in the HD group did not correlate with age at onset and of the disease and with the CAG triplet repeats. The primary finding of this study was the decreased activity of catalase in HD patients, suggesting a possible contribution of catalase, but not of other enzymes related with oxidative stress, to the pathogenesis of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号