首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization experiments with response surface statistical analysis were performed with Schizophyllum commune to obtain high beta-glucosidase yields. The factors in the optimization experiment were the concentrations of cellulose, peptone, and KH(2)PO(4). Their optimal values were 3.2, 3.0, and 0.2 g/100 ml, respectively. Enzyme assays revealed very high beta-glucosidase (22.2 U/ml) and cellobiase (68.9 U/ml) yields. The avicelase yield was low as compared with that from Trichoderma reesei. Mixtures of S. commune and T. reesei culture filtrates caused faster and more extensive saccharification of Avicel than could be achieved by either filtrate alone. A beta-glucosidase was isolated and purified from the optimized culture filtrate of S. commune. The electrophoretic mobility of the purified beta-glucosidase indicated a molecular weight of 97,000. The amino acid composition was similar to that of beta-glucosidase from T. reesei. The acidic (aspartate and glutamate) residues or their amides or both made up approximately 20% of the protein. The NH(2)-terminal amino acid of the enzyme was histidine.  相似文献   

2.
Optimization of enzyme complexes for lignocellulose hydrolysis   总被引:2,自引:0,他引:2  
The ability of a commercial Trichoderma reesei cellulase preparation (Celluclast 1.5L), to hydrolyze the cellulose and xylan components of pretreated corn stover (PCS) was significantly improved by supplementation with three types of crude commercial enzyme preparations nominally enriched in xylanase, pectinase, and beta-glucosidase activity. Although the well-documented relief of product inhibition by beta-glucosidase contributed to the observed improvement in cellulase performance, significant benefits could also be attributed to enzymes components that hydrolyze non-cellulosic polysaccharides. It is suggested that so-called "accessory" enzymes such as xylanase and pectinase stimulate cellulose hydrolysis by removing non-cellulosic polysaccharides that coat cellulose fibers. A high-throughput microassay, in combination with response surface methodology, enabled production of an optimally supplemented enzyme mixture. This mixture allowed for a approximately twofold reduction in the total protein required to reach glucan to glucose and xylan to xylose hydrolysis targets (99% and 88% conversion, respectively), thereby validating this approach towards enzyme improvement and process cost reduction for lignocellulose hydrolysis.  相似文献   

3.
To evaluate the potential of using the enzymes from spent mushroom compost (SMC) as an industrial enzyme, the production of alpha-amylase, cellulase, beta-glucosidase, laccase, and xylanase was determined from the SMC of four edible mushroom species (Pleurotus ostreatus, Lentinula edodes, Flammulina velutipes and Hericium erinaceum). Among the tested SMC, the SMC of L. edodes showed the highest enzyme activity in alpha-amylase (229 nkat/g), cellulase (759 nkat/g) and beta-glucosidase (767 nkat/g) in 0.5% Triton X-100, and that of P. ostreatus showed the highest activity in laccase (1452 nkat/g) in phosphate-buffered 0.2% Triton X-100. The highest xylanase activity (119 nkat/g) was found in the SMC of F. velutipes.  相似文献   

4.
Summary The production of cellulase and xylanase was investigated with a newly isolated strain of Trichoderma viride BT 2169. The medium composition was optimized on a shake-flask scale using the Graeco-Latin square technique. The temperature and time for optimal growth and production of the enzymes in shake cultures were optimized using a central composite design. The temperature optima for maximal production of filter paper cellulase (FPase), xylanase and -gluosidase were 32.8°, 34.7° and 31.1° C, respectively, and the optimum times for production of these enzymes were found to be 144, 158 and 170 h, respectively. The optimized culture medium and conditions (33° C) gave 0.55 unit of FPase, 188.1 units of xylanase and 3.37 units of -glucosidase per milliliter of culture filtrate at 144 h of shake culture. Among different carbon sources tested, the maximum enzyme activities were produced with sulphite pulp and all three enzymes were produced irrespective of the carbon sources used. Batch fermentation in a laboratory fermentor using 2% sulphite pulp allowed the production of 0.61 unit of FPase, 145.0 units of xylanase and 2.72 units of -glucosidase. In a fed-batch fermentation on 6% final Avicel concentration FPase and -glucosidase were 3.0 and 2.4 times higher respectively than those in batch fermentation on 2% Avicel. The pH and temperature optima as well as pH and temperature stabilities of T. viride enzymes were found to be comparable to T. reesei and some other fungal enzymes.  相似文献   

5.
A process has been developed for the bulk purification of cellulase-free beta-1,4-D-xylanase from the fungus Trichoderma harzianum E58. The process involved the primary step of ultrafiltering the culture filtrate via a 10,000-molecular-weight cut-off membrane to separate the cellulase (retentate) and xylanase (permeate) fractions. The cellulase component was concentrated by 40- to 60-fold, resulting in an enzyme complex that could effectively hydrolyze high concentrations of cellulose and xylan to glucose and xylose. The xylanase was concentrated and solvent exchanged by adsorption to a cationic exchanger, SP-ZetaPrep 250, followed by elution with a pH change in the buffer to give a purified and concentrated xylanase complex dissolved in a low-salt buffer. The resultant xylanase system was pure by the criteria of sodium dodecyl sulfate polyacrylamide electrophoresis, had a very high specific activity of 2400 IU/mg protein, was virtually free of filter paper activity, and had a ratio of contaminating filter paper activity of 2 x 10(-6) (0.009% endoglucanase activity). Approximately 3.3 g protein, which contained in excess of 7 x 10(6) IU xylanase activity, was obtained from 17 L original culture filtrate. The process scheme was designed to facilitate scale-up to an industrial level of production.  相似文献   

6.
Penicillium echinulatum has been identified as a potential cellulase producer for bioconversion processes but its cellulase system has never been investigated in detail. In this work, the volumetric activities of P. echinulatum cellulases were determined against filter paper (0.27 U/mL), carboxymethylcellulose (1.53 U/mL), hydroxyethylcellulose (4.68 U/mL), birchwood xylan (3.16 U/mL), oat spelt xylan (3.29 U/mL), Sigmacell type 50 (0.10 U/mL), cellobiose (0.19 U/mL), and p-nitrophenyl-glucopiranoside (0.31 U/mL). These values were then expressed in relation to the amount of protein and compared those of Trichoderma reesei cellulases (Celluclast 1.5L FG, Novozymes). Both enzyme complexes were shown to have similar total cellulase and xylanase activities. Analysis of substrate hydrolysates demonstrated that P. echinulatum enzymes have higher beta-glucosidase activity than Celluclast 1.5L FG, while the latter appears to have greater cellobiohydrolase activity. Unlike Celluclast 1.5L FG, P. echinulatum cellulases had enough beta-glucosidase activity to remove most of the cellobiose produced in hydrolysis experiments. However, Celluclast 1.5L FG became more powerful than P. echinulatum cellulases when supplemented with exogenous beta-glucosidase activity (Novozym 188). Both cellulase complexes displayed the same influence over the degree of polymerization of cellulose, revealing that hydrolyzes were carried out under the typical endo-exo synergism of fungal enzymes.  相似文献   

7.
Different concentrations of tetramethylthiuram disulfide (TMTD), sodium dimethyldithiocarbamate (NaDDC), and zinc dimethyldithiocarbamate (ZnDDC) affected the amount of cellulase(s) activity in the culture of Trichoderma reesei. After eight days incubation at 28 degrees C the greatest increase in Avicelase, CMCase, and beta-glucosidase over the control were observed at 0.1 ppm (TMTD) and 0.4 ppm (NaDDC and ZnDCC). There was decrease in the growth in the ZnDDC, but beta-glucosidase activity was reduced considerably. Total protein in the culture filtrate increased with the increase in cellulase(s) activity. No change in pH was observed at eight days incubation but pH increased (not exceeding 5.9) at 12 days incubation.  相似文献   

8.
The hydrolysis of purified celluloses (cotton, Avicel, Cellulose-123, Solka Floc SW40) and cellulosic wastes (rice straw, sugarcane bagasse, wood powders, paper factory effluents) by Sclerotium rolfsii CPC 142 culture filtrate was studied. Factors which effect saccharification such as pH, temperature, enzyme concentration, substrate concentration, produce inhibition, adsorption, and inactivation of enzyme and particle size were studied. Virtually no inhibition (less than 3%) of cellulose hydrolysis by the culture filtrate was observed by cellobiose and glucose up to 100 mg/mL. Filter paper degrading enzyme(s) (but neither carboxymethylcellulase nor beta-glucosidase) was adsorbed on cellulose. The n value in the S. rolfsii system was calculated to be 0.32 for Avicel P.H. 101 and 0.53 for alkali-treated (AT) rice straw indicating penetration of cellulase into AT rice straw. In batch experiments at 10% substrate level, solutions containing 6 to 7%, 3.8 to 4.7%, 4.0 to 5.1%, and 4.2 to 4.9% reducing sugars were produced in 24 to 48 from AT rice straw. AT bagasse, alkali - peracetic acid treated mesta wood and paper factory sedimented sludge effluent, respectively. The main constituent in the hydrolysate from cellulose was glucose with little or no cellobiose, probably due to the high cellobiase content in the culture filtrate.  相似文献   

9.
Three cellulases and a beta-glucosidase were purified from the culture filtrate of the thermophilic fungus Thermoascus aurantiacus. The isolated enzymes were all homogeneous on polyacrylamide-disc-gel electrophoresis. Data from chromatography on Bio-Gel P-60 and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated mol.wts. of 87000 (beta-glucosidase), 78000 (cellulase I), 49000 (cellulase II) and 34000 (cellulase III); the carbohydrate contents of the enzymes were 33.0, 5.5, 2.6 and 1.8% (w/w) respectively. Although the three purified cellulases were active towards filter paper, only cellulases I and III were active towards CM(carboxymethyl)-cellulose. Cellulase I was also active towards yeast glucan. The Km and catalytic-centre-activity values for the enzymes were as follows; 0.52 mumol/ml and 6.5 X 10(4) for beta-glucosidase on p-nitrophenyl beta-D-glucoside, 3.9 mg/ml and 6.3 for cellulase I on CM-cellulose, 1.2 mg/ml and 1.1 for cellulase I on yeast glucan, 35.5 mg/ml and 0.34 for cellulase II on filter paper, and 1.9 mg/ml and 33 for cellulase III on CM-cellulose.  相似文献   

10.
11.
由腐植土中分离到一株嗜热真菌,经鉴定为特异腐质霉(Humicola insolens Cooney etEmerson)。研究了这株菌纤维素酶的产生条件和一般性质。菌在含麦麸5%、NaNO0.3%的液体培养基(灭菌前pH7.5,灭菌后pH7.2)中,于45℃培养4天,以羧甲基纤维素钠为底物,每ml滤液酶活力为20个单位。酶作用的最适条件为:pH6.0,温度为65—70℃。该纤维素酶是一种耐热酶,热稳定性较强,70℃保温5分钟后,酶活力剩余88%。底物对该酶的热钝化有较强的保护作用,无底物存在条件下,70℃保温6小时后,酶活力仅剩余1%,而在同样的处理温度和时间,在有底物存在条件下,酶活力可剩余30%。该酶在45℃保温15小时的条件下,pH稳定范围为6.0—9.0。  相似文献   

12.
Summary A thermotolerantStreptomyces T7 produced 70–72 U/ml of extracellular xylanase activity when grown at 50°C in submerged culture, in à medium containing 5% wheat bran as a carbon source. Among the various sugars tested, maltose showed the highest activity of 8 U/ml. Pure xylan was less effective as an inducer as compared to wheat bran. Ammonium sulphate at a concentration of 0.7% was found to be optimum for maximum yield of the enzyme. The optimum period and pH for maximum production were 72th and 7.0, respectively. The culture filtrate was devoid of amylase, cellulase and B-xylosidase activity. The xylanase was exceptionally stable and did not show any loss in activity after storage at 50°C at pH 5.0 for 6 days.  相似文献   

13.
An endo-cellulase [EC 3.2.1.4.] of carboxymethyl-cellulase type (F-1) which was fractionated from culture filtrate of Irpex lacetus and purified to electrophoretic and ultracentrifugal homogeneity, was found to show xylanase [EC 3.2.1.8.] activity. The activity was not removed from any of the intermediate fractions during the purification of the initial F-I peak, and the radio of xylanase to cellulase activity remained almost unchanged through the purification processes. The xylanase activity of F-I showed not only the same optiomal pH, heat stability, and pH stability as its cellulase activity, but also the same mobility as the cellulase activity upon cellulose acetate film and starch zone electrophoreses. The overall rates of hydrolysis of mixtures of variouis concentrations of CM-cellulose and xylan by F-1 coincided well with those calculated from the Michaelis-Menten treatment of two substances competing for the same active site of the enzyme. These results indicate that the xylanase activity of F-1 is intrinsic to the cellulase itself.  相似文献   

14.
Biological pretreatment of rice straw and production of reducing sugars by hydrolysis of bio-pretreated material with Streptomyces griseorubens JSD-1 was investigated. After 10 days of incubation, various chemical compositions of inoculated rice straw were degraded and used for further enzymatic hydrolysis studies. The production of cellulolytic enzyme by S. griseorubens JSD-1 favored the conversion of cellulose to reducing sugars. The culture medium for cellulolytic enzyme production by using agro-industrial wastes was optimized through response surface methodology. According to the response surface analysis, the concentrations of 11.13, 20.34, 4.61, and 2.85 g L?1 for rice straw, wheat bran, peptone, and CaCO3, respectively, were found to be optimum for cellulase and xylanase production. Then the hydrolyzed spent Streptomyces cells were used as a nitrogen source and the maximum filter paper cellulase, carboxymethylcellulase, and xylanase activities of 25.79, 78.91, and 269.53 U mL?1 were achieved. The crude cellulase produced by S. griseorubens JSD-1 was subsequently used for the hydrolysis of bio-pretreated rice straw, and the optimum saccharification efficiency of 88.13% was obtained, indicating that the crude enzyme might be used instead of commercial cellulase during a saccharification process. These results give a basis for further study of bioethanol production from agricultural cellulosic waste.  相似文献   

15.
The substrate specificities of three cellulases and a beta-glucosidase purified from Thermoascus aurantiacus were examined. All three cellulases partially degraded native cellulose. Cellulase I, but not cellulase II and cellulase III, readily hydrolyzed the mixed beta-1,3; beta-1,6-polysaccharides such as carboxymethyl-pachyman, yeast glucan and laminarin. Both cellulase I and the beta-glucosidase degraded xylan, and it is proposed that the xylanase activity is an inherent feature of these two enzymes. Lichenin (beta-1,4; beta-1,3) was degraded by all three cellulases. Cellulase II cannot degrade carboxymethyl-cellulose, and with filter paper as substrate the end product was cellobiose, which indicates that cellulase II is an exo-beta-1,4-glucan cellobiosylhydrolase. Degradation of cellulose (filter paper) can be catalysed independently by each of the three cellulases; there was no synergistic effect between any of the cellulases, and cellobiose was the principal product of degradation. The mode of action of one cellulase (cellulase III) was examined by using reduced cellulodextrins. The central linkages of the cellulodextrins were the preferred points of cleavage, which, with the rapid decrease in viscosity of carboxymethyl-cellulose, confirmed that cellulase III was an endocellulase. The rate of hydrolysis increased with chain length of the reduced cellulodextrins, and these kinetic data indicated that the specificity region of cellulase III was five or six glucose units in length.  相似文献   

16.
Culture conditions for efficient production of extracellular xylanase by fungus, Chaetomium globosum isolate Cg2, have been standardized. Further, xylanase has been partially purified and characterized. Xylanase activity was maximum after 9 days of incubation when amended in medium with 1.5 % xylan as carbon source and 0.6% NH4H2PO4 as nitrogen source. Partial purification of the xylanase was accomplished by ammonium sulphate precipitation, followed by further purification by anion exchange chromatography on DEAE-Sephadex A-50 column. The partially purified enzyme was electrophoresed on SDS-PAGE and a single band produced corresponded to molecular weight, 32 kD. The optimum temperature and pH for maximum activity of purified xylanase were 30°C and 5.5, respectively. Both the purified xylanase and culture filtrate have shown the antifungal activity against Bipolaris sorokiniana, a causal organism of spot blotch of wheat. Purified xylanase at 100 μg ml?1 concentration caused 100 per cent inhibition of conidia germination of B. sorokiniana, whereas the culture filtrate was able to inhibit germination up to 67.5 per cent.  相似文献   

17.
An extracellular xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8, endo 1,4-beta-xylanase) was found to be the major protein in the culture filtrate of Penicillium chrysogenum when grown on 1% xylan. In contrast to other microorganism no xylanase multiplicity was found in P. chrysogenum under the conditions used. This enzyme was purified to homogeneity by high performance anion-exchange and size-exclusion chromatography. It had an M(r) of 35,000 as estimated by SDS-PAGE and was shown to be active as a monomer. No glycosylation of the protein could be detected neither by a sensitive glycostain nor by enzymatic deglycosylation studies. The enzyme hydrolyzed oat spelt and birchwood xylan randomly, yielding xylose and xylobiose as major end products. It had no cellulase, CMCase, beta-xylosidase or arabinogalactanase activity but acted on p-nitrophenylcellobioside. The pH and temperature optima for its activity were pH 6.0 and 40 degrees C, respectively. Eight peptides obtained after endoproteinase LysC digestion of xylanase have been sequenced, six of them showed considerable amino acid similarity to glucanases and high M(r)/acidic xylanases from different bacteria, yeasts and fungi.  相似文献   

18.
Trichoderma reesei VTT-D-86271 (Rut C-30) was cultivatedon media based on cellulose and xylan as the main carbon source in fermentors with different pH minimum controls. Production of xylanase was favoured by a rather high pH minimum control between 6.0 and 7.0 on both cellulose- and xylan-based media. Although xylanase was produced efficiently on cellulose as well as on xylan as the carbon source, significant production of cellulose was observed only on the cellulose-based medium and best production was at lower pH (4.0 minimum). Production of xylanase at pH 7.0 was shown to be dependent on the nature of the xylan in the cultivation medium but was independent of other organic components. Best production of xylanase was observed on insoluble, unsubstituted beech xylan at pH 7.0. Similar results were obtained in laboratory and pilot (200-l) fermentors. Downstream processing of the xylanase-rich, low-cellulose culture filtrate presented no technical problems despite apparent autolysis of the fungus at the high pH. Enzyme produced in the 200-l pilot fermentor was shown to be suitable for use in enzyme-aided bleaching of kraft pulp. Due to the high xylanase/cellulase ratio of enzyme activities in the culture filtrate, pretreatment for removal of cellulase activity prior to pulp bleaching was unnecessary. Correspondence to: M. J. Bailey  相似文献   

19.
An alkalothermophilic Thermomonospora sp. producing high levels of xylanase was isolated from self-heating compost. The culture produced 125 IU/ml of xylanase when grown in shake flasks at pH 9 and 50 degrees C for 96 h. The culture filtrate also contained cellulase (23 IU/ml), mannanase (1 IU/ml) and beta-xylosidase (0.1 IU/ml) activities. The xylanase was active at a broad range of pH (5-9) and temperature (40-90 degrees C). The optimum pH and temperature were 7 and 70 degrees C, respectively. The enzyme was stable in the pH range 5-8 and was thermostable with half-lives of 8 and 4 h at 60 degrees C and 70 degrees C, respectively, but only 9 min at 80 degrees C. The effects of a variety of compounds to enhance the stability of xylanase at 80 degrees C was studied. Addition of sorbitol, mannitol and glycerol increased the thermostability of xylanase in proportion to the number of hydroxyl groups per polyol molecule. Glycine also offered protection against thermoinactivation. Xylan, trehalose, gelatin and trehalose-gelatin mixture had marginal effect on the thermostability of xylanase at 80 degrees C.  相似文献   

20.
Microcrystalline cellulose (Avicel) was subjected to three different pretreatments (acid, alkaline, and organosolv) before exposure to a mixture of cellulases (Celluclast). Addition of beta-glucosidase, to avoid the well-known inhibition of cellulase by cellobiose, markedly accelerated cellulose hydrolysis up to a ratio of activity units (beta-glucosidase/cellulase) of 20. All pretreatment protocols of Avicel were found to slightly increase its degree of crystallinity in comparison with the untreated control. Adsorption of both cellulase and beta-glucosidase on cellulose is significant and also strongly depends on the wall material of the reactor. The conversion-time behavior of all four states of Avicel was found to be very similar. Jamming of adjacent cellulase enzymes when adsorbed on microcrystalline cellulose surface is evident at higher concentrations of enzyme, beyond 400 U/L cellulase/8 kU/L beta-glucosidase. Jamming explains the observed and well-known dramatically slowing rate of cellulose hydrolysis at high degrees of conversion. In contrast to the enzyme concentration, neither the method of pretreatment nor the presence or absence of presumed fractal kinetics has an effect on the calculated jamming parameter for cellulose hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号