首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Growth-associated phosphoprotein B-50 is a neural protein kinase C (PKC) substrate enriched in nerve growth cones that has been implicated in growth cone plasticity. Here we investigated whether B-50 is a physiological substrate for casein kinase II (CKII) in purified rat cortical growth cone preparations. Using site-specific proteolysis and known modulators of PKC, in combination with immunoprecipitation, mass spectrometry, and phosphoamino acid analysis, we demonstrate that endogenous growth cone B-50 is phosphorylated at multiple sites, on both serine and threonine residues. Consistent with previous reports, stimulation of PKC activity increased the phosphorylation of only those proteolytic fragments containing Ser41. Under basal conditions, however, phosphorylation was predominantly associated with fragments not containing Ser41. Mass spectrometry of tryptic digests of B-50, which had been immunoprecipitated from untreated growth cones, revealed that in situ phosphorylation occurs within peptides B-50181–198 and B-5082–98. These peptides contain the major and minor in vitro CKII phosphosites, respectively. In addition, cyanogen bromide digestion of immunoprecipitated chick B-50 generated a 4-kDa C-terminal B-50 phosphopeptide, confirming that phosphorylation of the CKII domain occurs across evolutionary diverse species. We conclude that B-50 in growth cones is not only a substrate for PKC, but also for CKII.  相似文献   

2.
We studied the molecular mechanism of noradrenaline release from the presynaptic terminal and the involvement of the protein kinase C substrate B-50 (GAP-43) in this process. To gain access to the interior of the presynaptic terminal, we searched for conditions to permeate rat brain synaptosomes by the bacterial toxin streptolysin O. A crude synaptosomal/mitochondrial preparation was preloaded with [3H]noradrenaline. After permeation with 0.8 IU/ml streptolysin O, noradrenaline efflux could be induced in a concentration-dependent manner by elevating the free Ca2+ concentration from 10(-8) to 10(-5) M. Efflux of the cytosolic marker protein lactate dehydrogenase was not affected by this increase in Ca2+. Ca2(+)-induced efflux of noradrenaline was largely dependent on the presence of exogenous ATP. Changing the Na+/K+ ratio in the buffer did not affect Ca2(+)-induced noradrenaline release. Release of noradrenaline could also be evoked by phorbol esters, indicating the involvement of protein kinase C. Ca2(+)- and phorbol ester-induced release were not additive at higher phorbol ester concentrations (greater than 10(-7) M). We compared the sensitivities of Ca2(+)- and phorbol ester-induced release of noradrenaline to the protein kinase inhibitors H-7 and polymyxin B and to antibodies raised against synaptic protein kinase C substrate B-50. Ca2(+)-induced release was inhibited by B-50 antibodies and polymyxin B, but not by H-7; phorbol ester-induced release was inhibited by polymyxin B and by H-7, but only marginally by antibodies to B-50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: Mouse monoclonal B-50 antibodies (Mabs) were screened to select a Mab that may interfere with suggested functions of B-50 (GAP-43), such as involvement in neurotransmitter release. Because the Mab NM2 reacted with peptide fragments of rat B-50 containing the unique protein kinase C (PKC) phosphorylation site at serine-41, it was selected and characterized in comparison with another Mab NM6 unreactive with these fragments. NM2, but not NM6, recognized neurogranin (BICKS), another PKC substrate, containing a homologous sequence to rat B-50 (34–52). To narrow down the epitope domain, synthetic B-50 peptides were tested in ELISAs. In contrast to NM6, NM2 immunoreacted with B-50 (39–51) peptide, but not with B-50 (43–51) peptide or a C-terminal B-50 peptide. Preabsorption by B-50 (39–51) peptide of NM2 inhibited the binding of NM2 to rat B-50 in contrast to NM6. NM2 selectively inhibited phosphorylation of B-50 during endogenous phosphorylation of synaptosomal plasma membrane proteins. Preabsorption of NM2 by B-50 (39–51) peptide abolished this inhibition. In conclusion, NM2 recognizes the QASFR peptide in B-50 and neurogranin. Therefore, NM2 may be a useful tool in physiological studies of the role of PKC-mediated phosphorylation and calmodulin binding of B-50 and neurogranin.  相似文献   

4.
The neuron-specific, calmodulin-binding protein B-50 (also known as GAP-43, F1, or neuromodulin) is an endogenous substrate of protein kinase C (PKC). PKC exclusively phosphorylates Ser residues in B-50. As potential phosphorylation sites for PKC, Ser41, Ser110, and Ser122 were indicated, of which Ser41 is contained in the sequence ASF, which matches with the sequence of a synthetic PKC substrate. N-terminally 35S-labeled B-50, produced from cDNA, was subjected to digestion with Staphylococcus aureus V8 protease (SAP). Consecutively, 35S-labeled 28- and 15-kDa fragments were formed, similar to those after digestion of 32P-labeled B-50. In a previous study, we showed that the 32P-labeled 15-kDa SAP fragment contains all 32P radioactivity. The present data indicate that it contains the N-terminus of B-50 as well. The 15-kDa fragment, with a calculated length ranging from amino acid residue 1 to 65, contains only one potential PKC phosphorylation site, at Ser41. Mutagenesis of Ser41 into Thr or Ala resulted in recombinant B-50 products with mobilities on two-dimensional electrophoresis similar to those of the nonmutated recombinant B-50 and the rat brain B-50. Only [Ser41]B-50 was phosphorylated by PKC, whereas [Thr41]- or [Ala41]B-50 did not show any phosphorylation at the positions indicated on the immunoblots. This leads us to the conclusion that Ser41 is the sole phosphorylation site for PKC in vitro.  相似文献   

5.
Abstract: To study the involvement of the protein kinase C (PKC) substrate B-50 [also known as growth-associated protein-43 (GAP-43), neuromodulin, and F1] in presynaptic cholecystokinin-8 (CCK-8) release, highly purified synaptosomes from rat cerebral cortex were permeated with the bacterial toxin streptolysin O (SL-O). CCK-8 release from permeated synaptosomes, determined quantitatively by radioimmunoassay, could be induced by Ca2+ in a concentration-dependent manner (EC50 of ~10-5M). Ca2+-induced CCK-8 release was maximal at 104M Ca2+, amounting to ~10% of the initial 6,000 ± 550 fmol of CCK-8 content/mg of synaptosomal protein. Only 30% of the Caa+-induced CCK-8 release was dependent on the presence of exogenously added ATP. Two different monoclonal anti-B-50 antibodies were introduced into permeated synaptosomes to study their effect on Ca2+-induced CCK-8 release. The N-terminally directed antibodies (NM2), which inhibited PKC-mediated B-50 phosphorylation, inhibited Ca2+-induced CCK-8 release in a dose-dependent manner, whereas the C-terminally directed antibodies (NM6) affected neither B-50 phosphorylation nor CCK-8 release. The PKC inhibitors PKC19–36 and 1 ?(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), which inhibited B-50 phosphorylation in permeated synaptosomes, had no effect on Ca2+-induced CCK-8 release. Our data strongly indicate that B-50 is involved in the mechanism of presynaptic CCK-8 release, at a step downstream of the Ca2+ trigger. As CCK-8 is stored in large densecored vesicles, we conclude that B-50 is an essential factor in the exocytosis from this type of neuropeptide-containing vesicle. The differential effects of the monoclonal antibodies indicate that this B-50 property is localized in the N-terminal region of the B-50 molecule, which contains the PKC phosphorylation site and calmodulin-binding domain.  相似文献   

6.
To determine changes in the degree of phosphorylation of the protein kinase C substrate B-50 in vivo, a quantitative immunoprecipitation assay for B-50 (GAP43, F1, pp46) was developed. B-50 was phosphorylated in intact hippocampal slices with 32Pi or in synaptosomal plasma membranes with [gamma-32P]ATP. Phosphorylated B-50 was immunoprecipitated from slice homogenates or synaptosomal plasma membranes using polyclonal anti-B-50 antiserum. Proteins in the immunoprecipitate were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the incorporation of 32P into B-50 was quantified by densitometric scanning of the autoradiogram. Only a single 48-kilodalton phosphoband was detectable in the immunoprecipitate, but this band was absent when preimmune serum was used. The B-50 immunoprecipitation assay was quantitative under the following condition chosen, as (1) recovery of purified 32P-labelled B-50 added to slice homogenates or synaptosomal plasma membranes was greater than 95%; and (2) modulation of B-50 phosphorylation in synaptosomal plasma membranes with adrenocorticotrophic hormone, polymyxin B, or purified protein kinase C in the presence of phorbol diester resulted in EC50 values identical to those obtained without immunoprecipitation. With this immunoprecipitation assay we found that treatment of hippocampal slices with 4 beta-phorbol 12,13-dibutyrate stimulated B-50 phosphorylation, whereas 4 alpha-phorbol 12,13-didecanoate was inactive. Thus, we conclude that the B-50 immunoprecipitation assay is suitable to monitor changes in B-50 phosphorylation in intact neuronal tissue.  相似文献   

7.
Recent studies have demonstrated that phorbol diesters enhance the release of various neurotransmitters. It is generally accepted that activation of protein kinase C (PKC) is the mechanism by which phorbol diesters act on neurotransmitter release. The action of PKC in neurotransmitter release is very likely mediated by phosphorylation of substrate proteins localized in the presynaptic nerve terminal. An important presynaptic substrate of PKC is B-50. To investigate whether B-50 mediates the actions of PKC in neurotransmitter release, we have studied B-50 phosphorylation in intact rat hippocampal slices under conditions that stimulate or inhibit PKC and neurotransmitter release. The slices were labelled with [32P]orthophosphate. After treatment, the slices were homogenized, B-50 was immunoprecipitated from the slice homogenate, and the incorporation of 32P into B-50 was determined. Chemical depolarization (30 mM K+) and the presence of phorbol diesters, conditions that stimulate neurotransmitter release, separately and in combination, also enhance B-50 phosphorylation. Polymyxin B, an inhibitor of PKC and neurotransmitter release, decreases concentration dependently the depolarization-induced stimulation of B-50 phosphorylation. The effects of depolarization are not detectable at low extracellular Ca2+ concentrations. It is concluded that in rat hippocampal slices B-50 may mediate the action of PKC in neurotransmitter release.  相似文献   

8.
Molecular Properties of the Growth-Associated Protein GAP-43 (B-50)   总被引:2,自引:3,他引:2  
The protein that has been identified in different contexts as growth-associated protein (GAP)-43, GAP-48, protein 4, B-50, F-1 gamma 5, and pp46, has been implicated in neural development, axonal regeneration, and the modulation of synaptic function. The present study investigated various properties of this protein (designated here as GAP/B-50), including its correct molecular weight and possible polymeric structure. GAP/B-50 was purified to greater than 90% homogeneity using an alkaline extraction procedure followed by a two-stage separation on a size-exclusion HPLC column. The equivalence of the purified protein to the B-50 phosphoprotein was confirmed by peptide digests, comigration, immunostaining, and amino acid composition. On a series of sodium dodecyl sulfate-polyacrylamide gels the apparent molecular weight of the protein was seen to vary inversely with the concentration of acrylamide in the gels. Using these data in the method of Ferguson, the molecular weight of GAP/B-50 was calculated to be 32.8 kilodaltons (kD), considerably lower than the previously reported values of 43-67 kD. The low molecular weight of the protein in the presence of detergent was confirmed by density centrifugation. In the absence of detergent, however, the protein was found to be part of a polymeric structure whose retention time by size-exclusion chromatography indicated a size of 124 kD; this property was also confirmed by density centrifugation under nondetergent conditions. These data suggest the possibility that the native form of GAP/B-50 in the presynaptic membrane may be a tetramer of four identical subunits.  相似文献   

9.
ADP-Ribosylation of the Neuronal Phosphoprotein B-50/GAP-43   总被引:1,自引:0,他引:1  
Abstract: The neuronal phosphoprotein B-50/GAP-43 is associated with growth and regeneration within the nervous system and its posttranslational status can be correlated with its cellular localization during growth and regeneration. Recently, B-50 has been shown to interact with certain G protein subunits. Regulation of G protein-mediated signal transduction may involve ADP-ribosylation in vivo. In the present study we have demonstrated that B-50 is a substrate for endogenous ADP-ribosyltransferases. The results are discussed with respect to the possible interaction of B-50 with G proteins, but also with regard to the posttranslational modification of B-50 by all major regulatory mechanisms that act at, or through, the neuronal membrane.  相似文献   

10.
Several lines of evidence indicate that protein kinase C (PKC) is involved in long-term potentiation (LTP) and in certain forms of learning. Recently, we found a learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to membrane-associated PKC in the hippocampus of rats subjected to an inhibitory avoidance task. Here we confirm and extend this observation, describing that a one trial inhibitory avoidance learning was associated with rapid and specific increases in B-50/GAP-43 phosphorylation in vitro and in PKC activity in hippocampal synaptosomal membranes. The increased phosphorylation of B-50/GAP-43 was seen at 30 min (+35% relative to naive or shocked control groups), but not at 10 or 60 min after training. This learning-associated increase in the phosphorylation of B-50/GAP-43 is mainly due to an increase in the activity of PKC. This is based on three different sets of data: 1) PKC activity increased by 24% in hippocampal synaptosomal membranes of rats sacrificed 30 min after training; 2) B-50/GAP-43 immunoblots revealed no changes in the amount of this protein among the different experimental groups; 3) phosphorylation assays, performed in the presence of bovine purified PKC or in the presence of the selective PKC inhibitor CGP 41231, exhibited no differences in B-50/GAP-43 phosphorylation between naive and trained animals. In conclusion, these results support the contention that hippocampal PKC participates in the early neural events of memory formation of an aversively-motivated learning task.  相似文献   

11.
Abstract: To investigate a possible function of the nervous tissuespecific protein kinase C substrate B-50/GAP-43 in regulati of the dynamics of the submembranous cytoskeleton. we studii the interaction between purified 6–50 and actin. Both the phosphorylated and dephosphorylated forms of 8–50 cosedi-mented with filamentous actin (F-actin) in a Ca2+-independent manner. Neither 6–50 nor phospho-6–50 had any effect on the kinetics of actin polymerization and on the critical concentration at steady state, as measured using pyrenylated actin. tight scattering of F-actin samples was not increased in the presence of 550, suggesting that 550 does not bundle actin filaments. The number of actin filaments, determined by [3H]cytochalasin B binding, was not affected by either phospho- or dephospho-B-50, indicating that 550 has neither a severing nor a capping effect. These observations were confirmed by electron microscopic evaluation of negatively stained F-actin samples, which did not reveal any structural changes in the actin meshwork on addition of 6–50, We conclude that 6–50 is an actin-binding protein that does not directly affect actin dynamics.  相似文献   

12.
Abstract: B-50 (GAP-43) is a presynaptic protein kinase C (PKC) substrate implicated in the molecular mechanism of noradrenaline release. To evaluate the importance of the PKC phosphorylation site and calmodulin-binding domain of B-50 in the regulation of neurotransmitter release, we introduced two monoclonal antibodies to B-50 into streptolysin O-permeated synaptosomes isolated from rat cerebral cortex. NM2 antibodies directed to the N-terminal residues 39–43 of rat B-50 dose-dependently inhibited Ca2+-induced radiolabeled and endogenous noradrenaline release from permeated synaptosomes. NM6 C-terminal-directed (residues 132–213) anti-B-50 antibodies were without effect in the same dose range. NM2 inhibited PKC-mediated B-50 phosphorylation at Ser41 in synaptosomal plasma membranes and permeated synaptosomes, inhibited 32P-B-50 dephosphorylation by endogenous synaptosomal phosphatases, and inhibited the binding of calmodulin to synaptosomal B-50 in the absence of Ca2+. Similar concentrations of NM6 did not affect B-50 phosphorylation or dephosphorylation or B-50/calmodulin binding. We conclude that the N-terminal residues 39–43 of the rat B-50 protein play an important role in the process of Ca2+-induced noradrenaline release, presumably by serving as a local calmodulin store that is regulated in a Ca2+- and phosphorylation-dependent fashion.  相似文献   

13.
The biochemistry and functional neurochemistry of the synaptosomal plasma membrane phosphoprotein B-50 (GAP-43) are reviewed. The protein is putatively involved in seemingly diverse functions within the nervous system, including neuronal development and regeneration, synaptic plasticity, and formation of memory and other higher cognitive behaviors. There is a considerable amount of information concerning the spatial and temporal localization of B-50 (GAP-43) in adult, fetal, and regenerating nervous tissue but far less is known about the physical chemistry and biochemistry of the protein. Still less information is available about posttranslational modifications of B-50 (GAP-43) that may be the basis of neurochemical mechanisms that could subsequently permit a variety of physiological functions. Hence, consideration is given to several plausible roles for B-50 (GAP-43) in vivo, which are discussed in the context of the cellular localization of the protein, significant posttranslational enzymes, and regulatory proteins, including protein kinases, phosphoinositides, calmodulin, and proteases.  相似文献   

14.
The neuronal protein B-50 may be involved in diverse functions including neural development, axonal regeneration, neural plasticity, and synaptic transmission. The rat B-50 sequence contains 226 amino acids which include 14 Ser and 14 Thr residues, all putative sites for phosphorylation by calcium/phospholipid-dependent protein kinase C (PKC). Phosphorylation of the protein appears to be a major factor in its biochemical and possibly its physiological activity. Therefore, we investigated rat B-50 phosphorylation and identified a single phosphorylated site at Ser41. Phosphoamino acid analysis eliminated the 14 Thr residues because only [32P]Ser was detected in an acid hydrolysate of [32P]B-50. Staphylococcus aureus protease peptide mapping produced a variety of radiolabelled [32P]B-50 products, none of which had the same molecular weights or HPLC retention times as several previously characterized fragments. Indirect confirmation of the results was provided by differential phosphorylation of major and minor forms of B-60 that have their N-termini at, or C-terminal to, the Ser41 residue and are the major products of specific B-50 proteolysis. Only those forms of B-60 that contained the Ser41 residue incorporated phosphate label. The results are discussed with reference to the substrate requirements for B-50 phosphorylation by PKC and the proposed structure of the B-50 calmodulin binding domain.  相似文献   

15.
Abstract: The involvement of B-50, protein kinase C (PKC), and PKC-mediated B-50 phosphorylation in the mechanism of Ca2+-induced noradrenaline (NA) release was studied in highly purified rat cerebrocortical synaptosomes permeated with streptolysin-O. Under optimal permeation conditions, 12% of the total NA content (8.9 pmol of NA/mg of synaptosomal protein) was released in a largely (>60%) ATP-dependent manner as a result of an elevation of the free Ca2+ concentration from 10?8 to 10?5M Ca2+ The Ca2+ sensitivity in the micromolar range is identical for [3H]NA and endogenous NA release, indicating that Ca2+-induced [3H]NA release originates from vesicular pools in noradrenergic synaptosomes. Ca2+-induced NA release was inhibited by either N- or C-terminal-directed anti-B-50 antibodies, confirming a role of B-50 in the process of exocytosis. In addition, both anti-B-50 antibodies inhibited PKC-mediated B-50 phosphorylation with a similar difference in inhibitory potency as observed for NA release. However, in a number of experiments, evidence was obtained challenging a direct role of PKC and PKC-mediated B-50 phosphorylation in Ca2+-induced NA release. PKC pseudosubstrate PKC19-36, which inhibited B-50 phosphorylation (IC50 value, 10?5M), failed to inhibit Ca2+-induced NA release, even when added before the Ca2+ trigger. Similar results were obtained with PKC inhibitor H-7, whereas polymyxin B inhibited B-50 phosphorylation as well as Ca2+-induced NA release. Concerning the Ca2+ sensitivity, we demonstrate that PKC-mediated B-50 phosphorylation is initiated at a slightly higher Ca2+ concentration than NA release. Moreover, phorbol ester-induced PKC down-regulation was not paralleled by a decrease in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Finally, the Ca2+- and phorbol ester-induced NA release was found to be additive, suggesting that they stimulate release through different mechanisms. In summary, we show that B-50 is involved in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Evidence is presented challenging a role of PKC-mediated B-50 phosphorylation in the mechanism of NA exocytosis after Ca2+ influx. An involvement of PKC or PKC-mediated B-50 phosphorylation before the Ca2+ trigger is not ruled out. We suggest that the degree of B-50 phosphorylation, rather than its phosphorylation after PKC activation itself, is important in the molecular cascade after the Ca2+ influx resulting in exocytosis of NA.  相似文献   

16.
Abstract: Consumption of moderate quantities of ethanol during pregnancy produces deficits in long-term potentiation in the hippocampal formation of adult offspring. Protein kinase C (PKC)-mediated phosphorylation of the presynaptic protein GAP-43 is critical for the induction of long-term potentiation. We tested the hypothesis that this system is affected in fetal alcohol-exposed (FAE) rats by measuring GAP-43 phosphorylation and PKC activity in the hippocampus of adult offspring of rat dams that had consumed one of three diets throughout gestation: (a) a 5% ethanol liquid diet, which produced a maternal blood ethanol concentration of 83 mg/dl (FAE); (b) an isocalorically equivalent 0% ethanol diet (pair-fed); or (c) lab chow ad libitum. Western blot analysis using specific antibodies to PKC-phosphorylated GAP-43 revealed that FAE rats had an ∼50% reduction in the proportion of phosphorylated GAP-43. Similarly, we found that PKC-mediated incorporation of 32P into GAP-43 was reduced by 85% in hippocampal slices from FAE rats compared with both control groups. FAE animals also showed a 50% reduction in total hippocampal PKC activity, whereas the levels of six major PKC isozymes did not change in any of the diet groups. These results suggest that GAP-43 phosphorylation deficits in rats prenatally exposed to moderate levels of ethanol are not due to alterations in the expression of either the enzyme or substrate protein, but rather to a defect in kinase activation.  相似文献   

17.
The protein B-50 is dephosphorylated in rat cortical synaptic plasma membranes (SPM) by protein phosphatase type 1 and 2A (PP-1 and PP-2A)-like activities. The present studies further demonstrate that B-50 is dephosphorylated not only by a spontaneously active PP-1-like enzyme, but also by a latent form after pretreatment of SPM with 0.2 mM cobalt/20 micrograms of trypsin/ml. The activity revealed by cobalt/trypsin was inhibited by inhibitor-2 and by high concentrations (microM) of okadaic acid, identifying it as a latent form of PP-1. In the presence of inhibitor-2 to block PP-1, histone H1 (16-64 micrograms/ml) and spermine (2 mM) increased B-50 dephosphorylation. This sensitivity to polycations and the reversal of their effects on B-50 dephosphorylation by 2 nM okadaic acid are indicative of PP-2A-like activity. PP-1- and PP-2A-like activities from SPM were further displayed by using exogenous phosphorylase alpha and histone H1 as substrates. Both PP-1 and PP-2A in rat SPM were immunologically identified with monospecific antibodies against the C-termini of catalytic subunits of rabbit skeletal muscle PP-1 and PP-2A. Okadaic acid-induced alteration of B-50 phosphorylation, consistent with inhibition of protein phosphatase activity, was demonstrated in rat cortical synaptosomes after immunoprecipitation with affinity-purified anti-B-50 immunoglobulin G. These results provide further evidence that SPM-bound PP-1 and PP-2A-like enzymes that share considerable similarities with their cytosolic counterparts may act as physiologically important phosphatases for B-50.  相似文献   

18.
Abstract: The sequence of molecular events linking depolarisation-dependent calcium influx to the release of neurotransmitters from nerve terminals is unknown; however, calcium-stimulated protein phosphorylation may play a role. In this study the incorporation of phosphate into proteins was investigated using an intact postmitochondrial pellet isolated from rat cerebral cortex. The rate and relative incorporation of label into individual phosphoproteins depended on the prelabelling time and buffer concentrations of calcium and phosphate. After prelabelling for 45 min, depolarisation caused a >20% increase in the labelling of 10 phosphoproteins, and this initial increase was maximal with 41 mM K+ for 5 s, or 30 μ M veratridine for 15 s, in the presence of 1 mM calcium. Both agents also led to an initial dephosphorylation of four phosphoproteins. Depolarisation for 5 min led to a significant decrease in the labelling of all phosphoproteins. All of the depolarisation-stimulated changes in protein phosphorylation were calcium-dependent. The depolarisation conditions found to optimally alter the phosphorylation of synaptosomal proteins find many parallels in studies on calcium uptake and neurotransmitter release. However, the uniform responses of such a large number of phosphoproteins to the multitude of depolarisation conditions studied suggest that the changes could equally well relate to recovery events such as biosynthesis of neurotransmitters and regulation of intraterminal metabolic activity.  相似文献   

19.
In situ phosphorylation of the presynaptic protein kinase C substrate B-50 was investigated in rat hippocampal slices incubated with the convulsant drug 4-aminopyridine (4-AP). Phosphorylation of B-50 was significantly enhanced 1 min after the addition of 4-AP (100 microM). This increase by 4-AP was concentration dependent (estimated EC50 30-50 microM). Concomitant with the changes in B-50 phosphorylation, 4-AP also dose-dependently stimulated [3H]noradrenaline [( 3H]NA) release from the slices. 4-AP stimulated [3H]NA release within 5 min to seven times the control level. The B-50 phosphorylation induced by 4-AP remained elevated after removal of the convulsant, this is contrast to B-50 phosphorylation induced by depolarization with K+. A similar persistent increase was observed for [3H]NA release after a 5-min incubation period with 4-AP. These results give more insight into the molecular mechanisms underlying 4-AP-induced epileptogenesis and provide further evidence for the correlation between B-50 phosphorylation and neurotransmitter release in the hippocampal slice.  相似文献   

20.
The effects of spontaneous circling motor activity on the in vitro phosphorylation of the protein kinase C substrate GAP-43/B-50 was studied on striatal membranes of developing rats (30 days of age). At this time of postnatal development, permanent plastic changes in cholinergic and dopaminergic systems are produced by physiological motor activity. Exercised animals showed a significant reduction of 31% in the level of GAP-43/B-50 endogenous phosphorylation in the contralateral striatum respect to the ipsilateral side (P < 0.01), while control animals did not show asymmetric differences. Compared to controls, the contralateral striatum of exercised animals showed a 33% reduction in the incorporation of 32P-phosphate into GAP-43/B-50 30 minutes post-exercise (P < 0.01). This change in GAP-43/B-50 phosphorylation was correlated with the running speed developed by the animals (r:0.8986, P = 0.015). GAP-43/B-50 immunoblots revealed no changes in the amount of this protein in any group. Moreover, a significant variation of 25% (P < 0.05) in the PKC activity was seen between both exercised striata. Interhemispheric differences were not found in control animals. We conclude that endogenous phosphorylation of this protein is also altered by motor activity in the same period that permanent changes in striatal neuroreceptors are triggered after motor training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号