首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cyclodepsipeptide antibiotic 86/88 (enniatin B) with strong hypolipidemic action was isolated from the culture liquid of the fungus INA F-86/88 identified as Fusarium lateritium Nees var. stilboides (Wr.) Bilai. In the Hep G2 cell culture the antibiotic suppressed 14C-acetate incorporation into cholesterol (IC50 1.75 microM), cholesterol ethers (IC50 1 microM), triglycerides (IC50 1.3 microM) and free fatty acids (IC50 2.2 microM). The most pronounced effect of the drugs, i.e. the suppression of the cholesterol ethers synthesis is likely due not only to the ACAT inhibition but also to the inhibition of the triglyceride synthesis and the diminishing of the free fatty acids pool in the cells.  相似文献   

2.
Citrinin, a fungal metabolite known as an antibiotic, strongly inhibited the labeled acetate incorporation into nonsaponifiable lipids by a cell-free system from rat liver but not the labeled mevalonate incorporation. Of the enzymes involved in cholesterol synthesis, two enzymes, acetoacetyl-CoA thiolase (EC 2.3.1.9) and 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.34), were specifically inhibited by the antibiotic. The concentration required for 50% inhibition was 0.2 mM for the former enzyme and 0.5 mM for the latter. Essentially the same results were obtained with a cell-free system from yeast although higher concentrations of the antibiotic were required for inhibition.  相似文献   

3.
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.  相似文献   

4.
Cholesterol metabolism during ketoconazole treatment in man   总被引:10,自引:0,他引:10  
Ketoconazole, an antifungal antibiotic, inhibits cholesterol synthesis by blocking demethylation of lanosterol. Effects of this inhibition were studied on serum cholesterol, lipoproteins and cholesterol precursors, biliary lipid composition, and fecal steroid elimination in five patients with prostate cancer treated with large doses of ketoconazole. The serum level of total cholesterol fell by 27%, that of LDL cholesterol by 41% and that of LDL apoB by 32% with ketoconazole alone; the fall in the total cholesterol level of a patient treated with ketoconazole-cholestyramine was 65%. Serum contents of free lanosterol and dihydrolanosterol increased up to 250 times, yet the total concentrations remained less than 2 mg/dl. Of the other cholesterol precursor sterols only those with delta 8-double bond increased several times, indicating that in addition to 14 alpha-demethylation, ketoconazole also interfered with metabolism of later intermediary sterols to some extent. Compared with serum sterols, lanosterols were enriched in biliary and fecal sterols up to 10-20 times. Fecal lanosterol output increased from 12 to 247 mg/day, and comprised over 20% fecal steroids of endogenous origin. Bile acid synthesis was significantly decreased, the proportion of chenodeoxycholic acid being markedly reduced in both biliary and fecal bile acids. Cholesterol absorption appeared to decrease yet fecal neutral sterol output and cholesterol synthesis were unchanged and the overall sterol synthesis was increased. It thus appears that ketoconazole inhibits cholesterol elimination as bile acids. However, by blocking 14 alpha-demethylation, it results in effective drainage of sterol nucleus as lanosterols into bile and feces, which, in turn, is associated with a marked reduction in low density lipoprotein (LDL) cholesterol level probably through activation of hepatic LDL apoB receptors.  相似文献   

5.
Amphotericin B is a polyene macrolide antibiotic which interacts specifically with steroids in mammalian cell membranes. Amphotericin B-resistant (AMBr) lines of stable phenotype have been isolated from cultured Chinese hamster (V79) cells. Three AMBr clones (AMBr-1, -2 and -3) isolated independently after treatment with nitrosoguanidine were resistant to ≥150 μg/ml of the antibiotic, while DNA synthesis as well as the colony-forming ability of the parental V79 cells was blocked by >80% of control in the presence of 20–50 μg/ml amphotericin B. The AMBr cell line also exhibited increased resistance to other polyene macrolide antibiotics such as nystatin and pentamycin. Other agents, however, such as cytosine arabinoside or ricin, blocked DNA synthesis in AMBr cells to the same extent as in V79 cells. The amphotericin B resistance phenotype was stably retained even after AMBr cells were cultured in the absence of the drug for over 200 generations. The content of free cholesterol or its esters was significantly decreased in all three resistant clones. Furthermore, cholesterol synthesis from acetate as well as mevalonate was partly defective in AMBr cells, compared with that in V79 cells.  相似文献   

6.
The effects of filipin on insects are dependent on the molar ratio of cholesterol to filipin. The larvicidal effects of the polyene antibiotic, filipin, can be prevented by excess cholesterol (“excess” herein is defined as a molar ratio of cholesterol to filipin of greater than 2 : 1) in housefly, Musca domestica L., and wax moth, Galleria mellonella L., larvae. Excess cholesterol also prevents the chemosterilant effect of filipin in housefly adults. The filipin-induced inhibition of [14C]cholesterol uptake by wax moth larvae is prevented by excess cholesterol; cholesterol uptake is increased severalfold. Dietary filipin, in the absence of added cholesterol, caused loss of 32P from housefly tissues and decreased the incorporation of 32P- and [14C]methyl-labeled choline into phospholipids of wax moth tissues. Addition of excess cholesterol to filipin-containing diets enhanced incorporation of 32P into the different classes of phospholipids, and phospholipid synthesis was nearly doubled.  相似文献   

7.
The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action. At antibiotic levels above 1:1 antibiotic: cholesterol ratios the NMR results show all three antibiotics to cause extensive vesicle destruction. The onset of this behavior, which appears to be independent of the total antibiotic concentraion, indicates a well defined antibiotic : cholesterol interaction stoichiometry. Despite the fact that cholesterol is required for antibiotic activity, the NMR spectra prior to vesicle destruction show no changes indicative of an antibiotic-induced reversal of cholesterol restriction of phosphatidylcholine mobility. The contrast with polyene antibiotic behavior in more extended bilayers is discussed.  相似文献   

8.
The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action.At antibiotic levels above 1 : 1 antibiotic : cholesterol ratios the NMR results show all three antibiotics to cause extensive vesicle destruction. The onset of this behavior, which appears to be independent of the total antibiotic concentration, indicates a well defined antibiotic : cholesterol interaction stoichiometry. Despite the fact that cholesterol is required for antibiotic activity, the NMR spectra prior to vesicle destruction show no changes indicative of an antibiotic-induced reversal of cholesterol restriction of phosphatidylcholine mobility. The contrast with polyene antibiotic behavior in more extended bilayers is discussed.  相似文献   

9.
Iturin A, bacillomycin L and bacillomycin L dimethyl ester have a strong lytic activity upon human erythrocytes while iturin C is totally inactive. The hemolytic action of the antibiotics is inhibited by free cholesterol as well as by cholesterol included in mixed liposomes of phosphatidylcholine-cholesterol and to a lesser extent by phosphatidylcholine liposomes. This inhibition is the result of an interaction between the antibiotic and added lipids which diminishes the concentration of free antibiotic available to lyse erythrocytes. The inhibitory effect of liposomes on hemolysis demonstrates the affinity of the antibiotic for artificial membranes, especially those containing cholesterol.  相似文献   

10.
ABSTRACT. Macrostomal cell formation is blocked by the antibiotic cerulenin at levels of 15 μg/ml or higher. Inhibition can be reversed up to 4 h following cerulenin addition by washing and resuspending cells in new, noncerulenin-treated transforming principle. In these latter cases, additional time equal to the time spent in the inhibitor, is needed for cells to reach control values of transformation. Neither the addition of saturated or unsaturated fatty acids, cholesterol added alone or in combination with stearic acid, nor a mixture of lipids extracted from Tetrahymena vorax reversed the cerulenin effect. Radioisotope incorporation data showed while protein synthesis was reduced by the end of 1 h and tetrahymanol synthesis by the end of 2 h, little or no effect of this inhibitor occurred on RNA or fatty acid synthesis during these times. One interpretation of these results is that cerulenin, by preventing first protein synthesis and later tetrahymanol synthesis, interferes with synthesis and formation of membranes required for the microstome to macrostome transition.  相似文献   

11.
The monoclonal antibodies against asymmetric channel formed in the lipid bilayer of polyene antibiotic amphotericin B and cholesterol after addition of the antibiotic to the compartment from the cis side of the membrane were obtained. The effect of the antibodies on ion conductance of the channel depends on the distribution of cholesterol in the membrane. When cholesterol was present on both sides of the lipid bilayer, three antibody molecules bound to the channel from the trans side of the membrane, thus markedly increasing the lifetime of the open state of the channel. When cholesterol was present in the cis monolayer only, the antibodies, added to the trans compartment of the cell, reduced the membrane conduction.  相似文献   

12.
Heredity of cholesterol absorption and synthesis was studied in siblings of hypercholesterolemic probands with low and high serum cholestanol to cholesterol ratio (assumed to indicate low and high absorption of cholesterol, respectively). Cholesterol synthesis was assayed with sterol balance technique and measuring serum cholesterol precursor to cholesterol ratios (synthesis markers of cholesterol), and cholesterol absorption with measuring dietary cholesterol absorption percentage and serum plant sterol and cholestanol to cholesterol ratios (absorption markers of cholesterol). In the siblings of the low absorption families, cholesterol absorption percentage and ratios of absorption markers were significantly lower, and cholesterol and bile acid synthesis, cholesterol turnover, fecal steroids and ratios of synthesis markers significantly higher than in the siblings of the high absorption families. The ratios of absorption and synthesis markers were inversely interrelated, and they were correlated with cholesterol absorption and synthesis in the siblings. In addition, low absorption was associated with high body mass index, low HDL cholesterol, and serum sex hormone binding globulin levels, suggesting that low absorption was associated with metabolic syndrome. Intrafamily correlations were significant for serum synthesis markers, cholestanol, triglycerides, and blood glucose level. In conclusion, cholesterol absorption efficiency and synthesis are partly inherited phenomena, and they can be predicted by the ratios of non-cholesterol sterols to cholesterol in serum.  相似文献   

13.
We measured the effect of β-cyclodextrin (BCD, a cholesterol scavenger) on water flow across the isolated toad bladder exposed to an osmotic gradient (J(w)) by a gravimetric technique. BCD, when present in the solution bathing the apical side of the bladder, inhibited the increase in J(w) caused by nystatin, a polyene antibiotic that acts by directly binding apical membrane cholesterol. When present in the basolateral bath, BCD inhibited the increase in J(w) caused by basolateral exposure to oxytocin (which binds membrane receptors and stimulates the synthesis of cAMP), but did not alter the response to theophylline (which inhibits hydrolysis of cAMP by cyclic nucleotide phosphodiesterase). The present data are consistent with the notion that agents that increase J(w) by interacting with membrane receptors, which appear to be clustered in cholesterol-rich domains of the basolateral membrane, are altered by cholesterol depletion, whereas agents that do not interact with receptors or other basolateral membrane components are not affected by this treatment. In either case, cholesterol depletion of the apical membrane does not affect the increase in J(w) brought about by an increase in intracellular cAMP concentration.  相似文献   

14.
Hepatic free cholesterol levels are influenced by cholesterol synthesis and ester formation, which, in turn, might regulate cholesterol secretion into bile and plasma. We manipulated the rates of hepatic cholesterol synthesis and esterification and measured biliary and very low density lipoprotein (VLDL) cholesterol secretion, and bile acid synthesis. Mevalonate decreased HMG CoA reductase by 80%, increased acyl coenzyme A: cholesterol acyltransferase (ACAT) by 60% and increased [3H]oleate incorporation into microsomal and VLDL cholesteryl esters by 174% and 122%, respectively. Microsomal and biliary free cholesterol remained constant at the expense of increased microsomal and VLDL cholesteryl ester content. Mevalonate did not change bile acid synthesis. 25-OH cholesterol decreased HMG-CoA reductase by 39%, increased ACAT by 24%, but did not effect 7 alpha-hydroxylase. 25-OH cholesterol increased [3H]oleate in microsomal and VLDL cholesterol esters by 71% and 120%. Biliary cholesterol decreased by 40% and VLDL cholesteryl esters increased by 83%. A small and unsustained decrease in bile acid synthesis (14CO2 release) occurred after 25-OH cholesterol. After orotic acid feeding, HMG-CoA reductase increased 352%, and [3H]oleate in microsomal and VLDL cholesteryl esters decreased by 43% and 89%. Orotic acid decreased all VLDL components including free cholesterol (68%) and cholesteryl esters (55%), and increased biliary cholesterol by 160%. No change in bile acid synthesis occurred. Hepatic cholesterol synthesis and esterification appear to regulate a cholesterol pool available for both biliary and VLDL secretion. Changing cholesterol synthesis and esterification did not alter bile acid synthesis, suggesting that either this common bile/VLDL secretory pool is functionally distinct from the cholesterol pool used for bile salt synthesis, or that free cholesterol availability in this precursor pool is not a major determinant of bile acid synthesis.  相似文献   

15.
Individual ionic channels were shown to be formed in the brain cholesterol containing phospholipid membranes by two-sided addition of the amphotericin B alkyl derivatives. At concentrations between 10(-8) and 10(-7) M, the resulting conductance appeared to be transient. Existence of different antibiotic assemblies was justified by the kinetic analysis of the membrane conductance decline following the antibiotic washing out. In order to account for the transient characteristics of the induced conductance, it was proposed that the antibiotic oligomers incorporate into the membrane from the aqueous phase, form channels aggregating with cholesterol, and then dissociate in the bilayer into non-active degraded oligomeric or monomeric forms.  相似文献   

16.
17.
Cholesterol absorption and synthesis contribute to maintaining cholesterol homeostasis. Several physiological and therapeutic factors affect cholesterol homeostasis, including: genetics, circadian rhythm, body weight, plant sterols, ezetimibe, and statin therapy. The present objective is to determine the main vector, i.e. cholesterol absorption or synthesis, affected by each of these factors, and to examine whether an alteration in one vector is linked to a reciprocal change in the other. Current techniques used to assess cholesterol absorption and synthesis are also reviewed. Review of physiological factors affecting cholesterol metabolism suggest a reciprocal relationship between these two vectors. Carriers of the E2 isoform of apolipoprotein E and ATP binding cassette (ABC) G8 19H (exon 1 mutation) show a decrease in cholesterol absorption accompanied by a corresponding increase in synthesis. Circadian rhythm affects cholesterol synthesis, however, its effect on absorption has yet to be established. Obese subjects show an increase in cholesterol synthesis with a subsequent decrease in cholesterol absorption. Weight loss down regulates cholesterol synthesis, but has little or no effect on absorption. In the case of therapeutic factors, plant sterols and stanols inhibit cholesterol absorption, which results in a compensatory increase in synthesis. Ezetimibe also decreases intestinal absorption, while reciprocally increasing synthesis. Statin therapy down regulates synthesis, which is accompanied by a rise in absorption. These findings suggest that a change in one vector, fairly consistently, results in a compensatory and opposing change in the other. An understanding of this reciprocal relationship between cholesterol absorption and synthesis may allow for the development of more effective interventions for dyslipidemic disorders.  相似文献   

18.
Cholesterol metabolism was examined in aortic smooth muscle cells from atherosclerosis-susceptible White Carneau pigeons that have been shown to lack a functional LDL receptor pathway. In cells incubated in the presence of whole serum or low density lipoprotein (LDL) the rate of cholesterol synthesis from [1-14C]acetate or of HMG-CoA reductase activity was 20-100 times greater than for mammalian cells incubated under the same conditions. Unexpectedly, cholesterol synthesis decreased by nearly 50% after preincubation for 24 hr with lipoprotein-deficient serum (LPDS). This occurred without a change in cellular cholesterol content. Neither the high rate of cholesterol synthesis nor the effect of LPDS could be accounted for by differences in cell turnover or state of growth. Cholesterol added in ethanol was ineffective in altering cellular cholesterol synthesis or esterification even though a near doubling in cellular free cholesterol content occurred. Cholesterol synthesis and esterification were, however, able to be regulated with 25-OH cholesterol and mevalonolactone, as indicated by their ability to suppress cholesterol synthesis and to stimulate cholesterol esterification. In spite of the high rate of endogenous cholesterol synthesis, cellular cholesterol content was maintained at a constant level by the efficient efflux of the newly synthesized cholesterol from the cell. Unlike mammalian cells that require a cholesterol acceptor in the medium for efflux to occur, cholesterol efflux from pigeon cells occurred in the absence of a cholesterol acceptor. This suggests either that pigeon cells utilize a different mechanism for cholesterol efflux or that they produce their own cholesterol acceptor. As a result of a lack of a functional LDL receptor pathway, pigeon smooth muscle cells do not maintain cholesterol homeostasis through the controlled uptake of exogenous LDL cholesterol, as do mammalian cells. Rather, pigeon smooth muscle cells would appear to regulate cholesterol concentrations at the level of either cholesterol synthesis or efflux.  相似文献   

19.
Competition studies between cholesterol and ergosterol were carried out to gain insight into the binding interactions between nystatin and these sterols. Lipid vesicles were prepared with mixtures of palmitoyloleoylphosphocholine/ergosterol/cholesterol, and both sterol molar ratio and total content were varied. The inhibitory effect of cholesterol toward the ergosterol ability to induce the formation of long-lived fluorescent antibiotic species was used to detect nystatin-cholesterol interactions. It was found that the key factor controlling nystatin photophysical properties in the ternary lipid mixtures was their ergosterol/cholesterol molar ratio and not their overall sterol content. Moreover, permeabilization studies showed that nystatin was able to form pores in all the mixed vesicles, but the initial rate of pore formation was also dependent on the ergosterol/cholesterol molar ratio. Our data show that ergosterol is displaced by competing cholesterol, indirectly confirming cholesterol's ability to coassemble with nystatin. The distinct spectroscopic properties emphasize the different molecular architecture adopted by nystatin-cholesterol and -ergosterol complexes, and therefore are relevant to understanding the interaction of the antibiotic with membranes.  相似文献   

20.
Summary Mevinolin, an inhibitor of cholesterol synthesis, was used to study the effect of endogenous cholesterol synthesis on the morphology and function of differentiating and differentiated fetal rat adrenocortical cells grown in primary culture. Upon adrenocorticotrophic hormone (ACTH) stimulation under conditions in which endogenous cholesterol synthesis was inhibited but exogenous (lipoprotein) cholesterol was available, the cells differentiated normally from glomerulosa-like to fasciculata-like cells; the steroid hormone secretion was maximally induced. Under conditions in which cholesterol synthesis was maximally inhibited by mevinolin and the cells had no access to exogenous cholesterol, the cells did not differentiate into fasciculata-like cells; the ACTH-induced steroid response was highly suppressed under these conditions. The addition of either human low-density lipoprotein (LDL) or high-density lipoprotein (HDL3) to the culture medium restored the ACTH-induced differentiation and steroid secretion. Thus, in the absence of exogenous cholesterol, endogenous cholesterol synthesis was a prerequisite for differentiation. In cultures grown in the presence of exogenous cholesterol and ACTH with mevinolin-inhibited cholesterol synthesis and high steroid output, an increase in cytoplasmic lipids was evident, suggesting upregulation of LDL and HDL receptors. The results also demonstrated that induction of phenotypic differentiation from glomerulosalike into fasciculata-like cells can proceed in the presence of a cholesterol synthesis inhibitor like mevinolin; this differentiation in the absence of endogenous cholesterol synthesis is accompanied by the appearance of cytoplasmic cholesterol ester droplets, typical of fasciculata cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号