首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ocular infection with HSV results in a blinding immunoinflammatory lesion known as herpetic stromal keratitis (HSK). Early preclinical events include inflammatory cell, mainly neutrophils, infiltration of the stroma, and neovascularization. To further evaluate the role of neutrophils in pathogenesis, HSV infection was compared in BALB/c and mice of the same background, but lacking CXCR2, the receptor for chemokines involved in neutrophil recruitment. Our results show clear differences in the outcome of ocular HSV infection in CXCR2-/- compared with control BALB/c mice. Thus, CXCR2-/- animals had minimal PMN influx during the first 7 days postinfection, and this correlated with a longer duration of virus infection in the eye compared with BALB/c mice. The CXCR2-/- mice were also more susceptible to HSV-induced lesions and developed HSK upon exposure to a dose of HSV that was minimally pathogenic to BALB/c mice. The basis for the greater HSK lesion susceptibility of CXCR2-/- mice was associated with an elevated IL-6 response, which appeared in turn to induce the angiogenic factor, vascular endothelial growth factor. Our results serve to further demonstrate the critical role of angiogenesis in the pathogenesis of ocular lesions.  相似文献   

2.
Ocular infection with herpes simplex virus (HSV) results in a blinding immunoinflammatory stromal keratitis (SK) lesion. Early preclinical events include polymorphonuclear neutrophil (PMN) infiltration and neovascularization in the corneal stroma. We demonstrate here that HSV infection of the cornea results in the upregulation of the cyclooxygenase 2 (COX-2) enzyme. Early after infection, COX-2 was produced from uninfected stromal fibroblasts as an indirect effect of virus infection. Subsequently, COX-2 may also be produced from other inflammatory cells that infiltrate the cornea. The induction of COX-2 is a critical event, since inhibition of COX-2 with a selective inhibitor was shown to reduce corneal angiogenesis and SK severity. The administration of a COX-2 inhibitor resulted in compromised PMN infiltration into the cornea, as well as diminished corneal vascular endothelial growth factor levels, likely accounting for the reduced angiogenic response. COX-2 stimulation by HSV infection represents a critical early event accessible for therapy and the control of SK severity.  相似文献   

3.
This report evaluates the role of interaction between glucocorticoid-induced tumor necrosis factor receptor (GITR) and GITR ligand (GITR-L) in the immuno-inflammatory response to infection with herpes simplex virus (HSV). Both GITR and GITR-L were transiently upregulated after ocular HSV infection, on antigen-specific T cells and antigen-presenting cells, respectively, in the draining lymph node (DLN). In addition, virus-specific T-cell responses in the DLN and spleen were enhanced by anti-GITR antibody treatment, an outcome expected to result in more severe inflammatory lesions. Intriguingly, the treatment resulted in significantly diminished T-cell-mediated ocular lesions. The explanation for these findings was that anti-GITR antibody treatment caused a reduced production of ocular MMP-9, a molecule involved in ocular angiogenesis, an essential step in the pathogenesis of herpetic keratitis. Our results are the first observations to determine in vivo kinetics of GITR and GITR-L expression after virus infection, and they emphasize the role of GITR-GITR-L interaction to regulate virus-induced immuno-inflammatory lesions.  相似文献   

4.
The normal cornea is transparent, which is essential for normal vision, and although the angiogenic factor vascular endothelial growth factor A (VEGF-A) is present in the cornea, its angiogenic activity is impeded by being bound to a soluble form of the VEGF receptor-1 (sVR-1). This report investigates the effect on the balance between VEGF-A and sVR-1 that occurs after ocular infection with HSV, which causes prominent neovascularization, an essential step in the pathogenesis of the vision-impairing lesion, stromal keratitis. We demonstrate that HSV-1 infection causes increased production of VEGF-A but reduces sVR-1 levels, resulting in an imbalance of VEGF-A and sVR-1 levels in ocular tissues. Moreover, the sVR-1 protein made was degraded by the metalloproteinase (MMP) enzymes MMP-2, -7, and -9 produced by infiltrating inflammatory cells that were principally neutrophils. Inhibition of neutrophils, inhibition of sVR-1 breakdown with the MMP inhibitor marimastat, and the provision of exogenous recombinant sVR-1 protein all resulted in reduced angiogenesis. Our results make the novel observation that ocular neovascularization resulting from HSV infection involves a change in the balance between VEGF-A and its soluble inhibitory receptor. Future therapies aimed to increase the production and activity of sVR-1 protein could benefit the management of stromal keratitis, an important cause of human blindness.  相似文献   

5.
Corneal neovascularization represents a key step in the blinding inflammatory stromal keratitis (SK) lesion caused by ocular infection with herpes simplex virus (HSV). In this report, we describe a novel approach for limiting the angiogenesis caused by HSV infection of the mouse eye. We show that topical or systemic administration of the Src kinase inhibitor (TG100572) that inhibits downstream molecules involved in the vascular endothelial growth factor (VEGF) signaling pathway resulted in markedly diminished levels of HSV-induced angiogenesis and significantly reduced the severity of SK lesions. Multiple mechanisms were involved in the inhibitory effects. These included blockade of IL-8/CXCL1 involved in inflammatory cells recruitment that are a source of VEGF, diminished cellular infiltration in the cornea, and reduced proliferation and migration of CD4(+) T cells into the corneas. As multiple angiogenic factors (VEGF and basic fibroblast growth factor [bFGF]) play a role in promoting angiogenesis during SK and since Src kinases are involved in signaling by many of them, the use of Src kinase inhibition represents a promising way of limiting the severity of SK lesions the most common cause of infectious blindness in the Western world.  相似文献   

6.
The role of B cells and humoral immunity in herpes simplex virus (HSV) ocular infections was studied in immunoglobulin mu chain gene-targeted B-cell-deficient mice (muK/O). At doses of virus well tolerated by immunocompetent mice, heightened susceptibility of muK/O mice to herpetic encephalitis as well as to herpetic stromal keratitis (HSK) was observed. An explanation was sought for the increased severity of HSK in the muK/O mice. First, the lack of antibody responses in muK/O mice resulted in longer viral persistence and dissemination to the corneal stroma, the site of inflammation. Prolonged virus expression in the corneal stroma was suggested to cause bystander activation of Th1-type CD4(+) T cells, further contributing to the severity of HSK lesion expression in muK/O mice. Second, muK/O mice generated minimal Th2 cytokine responses compared to wild-type mice. Such responses might serve to downregulate the severity of Th1-mediated HSK lesions.  相似文献   

7.
An animal model has been developed to clarify the mechanism for spread of herpes simplex virus (HSV) from neuron to epithelial cells in herpetic epithelial keratitis. HSV was introduced into the murine trigeminal ganglion via stereotaxic guided injection. After 2 to 5 days, the animals were euthanized. Ganglia and corneas were prepared for light and electron microscopic immunocytochemistry with antisera to HSV. At 2 days, labeled axons were identified in the stromal layer. At 3 days, we could detect immunoreactive profiles of trigeminal ganglion cell axons that contained many vesicular structures. By 3 and 4 days, the infection had spread to all layers of epithelium, and the center of a region of infected epithelium appeared thinned. At 5 day, fewer basal cells appeared infected, although infection persisted in superficial cells where it had expanded laterally. Mature HSV was found in the extracellular space surrounding wing and squamous cells. Viral antigen was expressed in small pits along the apical surfaces of wing and squamous cells but not at the basal surface of these cells or on basal cells. This polarized expression of viral antigen resulted in the spread of HSV to superficial cells and limited lateral spread to neighboring basal cells. The pathogenesis of HSV infection in these mice may serve as a model of the human recurrent epithelial disease in the progression of focal sites of infection and transfer from basal to superficial cells.  相似文献   

8.
Viruses are suspected but usually unproven triggering factors in autoimmunity. One favored mechanism to explain the role of viruses in the genesis of autoimmunity is molecular mimicry. An immunoinflammatory blinding lesion called herpetic stromal keratitis (HSK) that follows ocular infection with herpes simplex virus (HSV) is suggested to result from a CD4(+) T-cell response to a UL6 peptide of HSV that cross-reacts with a corneal autopeptide shared with the immunoglobulin G2a(b) (IgG2a(b)) isotype. The present report reevaluates the molecular mimicry hypothesis to explain HSK pathogenesis. Our results failed to reveal cross-reactivity between the UL6 and IgG2a(b) peptides or between peptide reactive T cells and HSV antigens. More importantly, animals infected with HSV failed to develop responses that reacted with either peptide, and infection with a recombinant vaccinia UL6 vector failed to cause HSK, in spite of generating UL6 reactivity. Other lines of evidence also failed to support the molecular mimicry hypothesis, such as the failure to affect HSK severity upon tolerization of susceptible BALB/c and B-cell-deficient mice with IgG2a(b) or UL6 peptides. An additional study system revealed that HSK could be induced in mouse strains, such as the OT2 x RAG1(-/-) mice (T cell receptor transgenic recognizing OVA(323-339)) that were unable to produce CD4(+) T-cell responses to any detectable HSV antigens. Our results cast doubt on the molecular mimicry hypothesis as an explanation for the pathogenesis of HSK and indicate that if autoimmunity is involved its likely proceeds via a bystander activation mechanism.  相似文献   

9.
In primary ocular herpes simplex virus (HSV) infection, nitric oxide may function to control viral replication and herpetic stromal keratitis (HSK) lesions. Recurrent HSK, manifested as corneal opacity and neovascularization, is the potentially blinding sequel to primary infection. Here, we assess the effects of nitric oxide synthase inhibition on a mouse model of recurrent HSK. In preliminary primary infection experiments, NIH inbred mice treated with aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), experienced no changes in post-infection tear, brain, or ganglia virus titers, but encephalitis-related mortality was elevated. After UV-B stimulated viral reactivation, iNOS inhibition did not affect virus shedding or clinical disease. In contrast to primary HSK, there was no exacerbation of mortality in recurrent disease. Our findings indicate that nitric oxide can be neuroprotective without antiviral effects in primary HSK, and does not play a significant role in the pathogenesis of recurrent HSK. Compared with data from other mouse strains, this work suggests that there may be a genetic component to the importance of NO in controlling ocular HSV infection.  相似文献   

10.
Herpetic stromal keratitis an inflammatory disease of the eye resulting from herpes simplex virus type 1 infection, is a common cause of blindness. The disease is generally considered to represent an immunopathologic response, but the exact mechanism remains in doubt and is subject to debate. We have investigated the nature of inflammatory cells in the eye and have isolated ocular cells to establish their phenotype and determine some of their functions. By means of immunocytochemistry and cytofluorography, the only T lymphocyte subset detectable at any stage of infection of BALB/c mice were CD4+ cells. However CD8+ T cells were readily detectable in draining lymph nodes (DLN). Assays for cells with HSV-1-specific cytotoxic function of both CD4+ class II restricted and CD8+ class I-restricted activity were performed. Although in DLN both cell types were found, among ocular cells only CD4+ cytotoxic cells were evident. The frequencies of CD4+ CTL-precursor in eyes were determined and found to be at least 8- to 10-fold less than found in DLN. The number of CTL-precursor in an individual eye was estimated to be 20 or less. Our results further support the notion that CD4+ mediate the immunopathology of herpetic stromal keratitis, but on quantitative grounds cast doubt on the idea that cytotoxicity is the principal mechanism involved.  相似文献   

11.
Typical herpes simplex keratitis that developed in a 5-year-old boy was initially diagnosed cytologically in Papanicolaou-stained samples. Subsequently, an immunoperoxidase staining technique was used to identify the specific type of herpes simplex virus (HSV) in the destained cellular samples. The positive staining helped to establish the diagnosis of a type 1 HSV infection, permitting early treatment with acyclovir and subsequent complete recovery from the ocular herpetic infection. Emphasis is placed on the value of the immunoperoxidase technique for the rapid and specific diagnosis of cases of suspected HSV infection.  相似文献   

12.
The cornea is a complex tissue that must preserve its transparency to maintain optimal vision. However, in some circumstances, damage to the eye can result in neovascularization that impairs vision. This outcome can occur when herpes simplex virus type 1 (HSV-1) causes the immunoinflammatory lesion stromal keratitis (SK). Potentially useful measures to control the severity of SK are to target angiogenesis which with herpetic SK invariably involves VEGF. One such way to control angiogenesis involves the endothelial receptor Robo4 (R4), which upon interaction with another protein activates an antiangiogenic pathway that counteracts VEGF downstream signaling. In this study we show that mice unable to produce R4 because of gene knockout developed significantly higher angiogenesis after HSV-1 ocular infection than did infected wild type (WT) controls. Moreover, providing additional soluble R4 (sR4) protein by subconjunctival administration to R4 KO HSV-1 infected mice substantially rescued the WT phenotype. Finally, administration of sR4 to WT HSV-1 infected mice diminished the extent of corneal angiogenesis compared to WT control animals. Our results indicate that sR4 could represent a useful therapeutic tool to counteract corneal angiogenesis and help control the severity of SK.  相似文献   

13.
Pseudomonas aeruginosa can cause ulcerative bacterial keratitis. A feature of keratitis is the rapid infiltration of the avascular corneal stroma by neutrophils. KC is a potent neutrophil chemokine. The present study used a mouse model of ocular infection to assess the relationship between KC and inflammation in the cornea in response to challenge with a strain of P. aeruginosa causing keratitis. Low levels of KC mRNA and protein were detected by in situ hybridization and ELISA, respectively, in unchallenged corneas. Dramatically increased numbers of KC mRNA+ cells were present in P. aeruginosa strain 6294-challenged corneas. Expression of KC mRNA was found to be up-regulated in the corneal epithelium in response to wounding alone. The KC mRNA+ cells were located in the epithelium and corresponding to infiltrating neutrophils cells in the stroma. Quantification of KC protein at different time points showed peak levels at 8 h of bacterial challenge. These results suggest that KC may be involved with the regulation of leucocyte infiltration early during bacterial keratitis.  相似文献   

14.
Herpetic stromal keratitis in the absence of viral antigen recognition   总被引:4,自引:0,他引:4  
Herpetic stromal keratitis (HSK), resulting from ocular infection with herpes simplex virus (HSV), is thought to represent a T cell mediated immunopathologic lesion. Antigens recognized by the inflammatory T cells remain unresolved and non-TCR mediated activation of T cells (bystander activation) is considered as also involved. This report documents further evidence for the bystander activation mechanisms using three T cell transgenic RAG-/- mouse strains. Accordingly HSK occurred in PCC RAG-/-, P14 RAG-/-, and OT-1 RAG-/- mice. In none of the models could HSV specific T cell reactivity be demonstrated and animals were unprotected from lesion development by immunization prior to HSV ocular infection. The results support the role of bystander activation as a mechanism of T cell mediated immunopathology and show that CD8(+) as well as CD4(+) T cells can participate in HSK lesion development.  相似文献   

15.
Corneal infection of BALB/c mice with herpes simplex virus type 1 results in a chronic inflammatory response in the stroma termed herpetic stromal keratitis (HSK). This disease is considered to be immunopathological and mediated primarily by CD4+ T cells of the type 1 cytokine profile. However, the nature of the antigens, virus or host derived, which drive the inflammatory response remains in doubt. In this study, the relevance of infection with replicating virus for the subsequent development of HSK was evaluated with immunocompetent mice as well as with SCID mice reconstituted with herpes simplex virus-immune CD4+ T cells. In the corneas of immunocompetent mice, infectious virus, viral antigen, and mRNA expression were detectable for only a brief period of time (< or = 7 days postinfection), and all were undetectable by the time clinical lesions were evident (10 to 15 days). Viral replication, however, was necessary for the development of HSK in both models, since infection with UV-inactivated virus or with mutant viruses which were incapable of multiple rounds of replication in vivo failed to induce HSK. The inactivated and mutant viral preparations did, however, stimulate T-cell immune responses in immunocompetent mice. The results are discussed in terms of possible involvement of host antigens exposed in response to transient progeny virion replication in the immune-privileged cornea.  相似文献   

16.
Bystander activation involving T lymphocytes in herpetic stromal keratitis   总被引:11,自引:0,他引:11  
Herpes simplex virus infection of mouse corneas can lead to the development of an immunopathological lesion, termed herpetic stromal keratitis (HSK). Such lesions also occur in TCR-transgenic mice backcrossed to SCID (TgSCID) that are unable to mount detectable HSV-specific immune responses. The present study demonstrates that lesion expression in such mice depends on continuous viral replication, whereas in immunocompetent mice, lesions occurred even if virus replication was terminated at 4 days after infection. The continuous replication in TgSCID mice was considered necessary to produce an activating stimulus to CD4(+) T cells that invade the cornea. Lesions in TgSCID were resistant to control by cyclosporin A, but were inhibited by treatment with rapamycin. This result was interpreted to indicate that T cell activation involved a non-TCR-mediated cytokine-driven bystander mechanism. Bystander activation was also shown to play a role in HSK lesions in immunocompetent mice. Accordingly, in immunocompetent DO11.10 mice, lesions were dominated by KJ1.26(+) OVA-specific CD4(+) T cells that were unreactive with HSV. In addition, KJ1.26(+) HSV nonimmune cells parked in ocularly infected BALB/c mice were demonstrable in HSK lesions. These results provide insight for the choice of new strategies to manage HSK, an important cause of human blindness.  相似文献   

17.
Infection of the cornea with herpes simplex virus (HSV) can result in a chronic disease called herpetic stromal keratitis (HSK). The disease represents one of the leading causes of infectious blindness in the Western world. Immune-mediated cellular damage is suspected in the pathogenesis of human HSK. The murine model has been pivotal in further establishing HSK as an immunopathological disease. This article reviews understanding of HSK, both in humans and in the mouse model, with an emphasis on possible future therapeutic strategies to counteract this blinding immunoinflammatory disease.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) induces an ocular chronic immunoinflammatory syndrome named herpetic stromal keratitis that can lead to vision impairment and blindness. We have reported that the synthetic brassinosteroid (22S,23S)-3beta-bromo-5alpha,22,23-trihydroxystigmastan-6-one, designated as 2, is a potent antiviral in vitro and reduces the incidence of murine herpetic stromal keratitis, although it does not exert an antiviral effect in vivo. In the present report, we investigated whether brassinosteroid 2 may play a role in the modulation of the response of epithelial and immune cells to HSV-1 infection. Compound 2 blocked HSV-1-induced activation of NF-kappaB by inhibiting its translocation to the nucleus of infected corneal and conjunctival cells in vitro, as well as significantly reduced the secretion of TNF-alpha in infected NHC cells. Conversely, IL-6 production was enhanced by compound 2 after HSV-1 infection in both cell types. The production of these cytokines was considerably reduced in a LPS-stimulated macrophage cell line after treatment with compound 2. In conclusion, brassinosteroid 2 would be playing a modulating effect as an inductor or inhibitor, depending on the cell type involved. The improvement of disease observed in mice could be a balance between both, the immunostimulating and immunosuppressive effects of brassinosteroid 2 in vivo.  相似文献   

19.
Cytokines are very important in the host defense system, and play a critical role in protection against bacterial and viral infections. Cytokines are also involved in the pathogenesis and development of symptoms in infections. In this article, Helicobacter pylori (H. pylori) infection as bacterial infection, and influenza virus infection, encephalomyocarditis virus (EMCV) infection, and herpes simplex virus (HSV) infection as viral infection are mentioned. In H. pylori infection, various chemokines, especially interleukin (IL)-8, induce inflammatory responses in the gastroduodenal mucosa. Furthermore, IL-6, IL-7, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma are involved in both protection and pathogenesis. In influenza virus infection, IFN-alpha/beta, IFN-gamma, and IL-6 play protective roles. In EMCV infection, IL-6 and TNF-alpha play important roles as a protective and exacerbative factor in acute myocarditis, respectively. Furthermore, in HSV infection, the production of inflammatory cytokines is closely correlated with the pathogenesis of herpetic keratitis, and IFN-gamma plays an important role in enhancing viral clearance from the cornea and trigeminal ganglions.  相似文献   

20.
Neovascularization by sprouting angiogenesis is critical for inflammation-mediated tissue remodeling and wound healing. We report here that human polymorphonuclear neutrophils (PMN) stimulated for 1 h with 100 nM N-formyl-methionyl-leucyl-phenylalanine (fMLP) released a proangiogenic entity that induced sprouting of capillary-like structures in an in vitro angiogenesis assay. The effect was comparable to the response obtained on stimulation with 100 ng/ml basic FGF. The PMN-mediated response was inhibited by neutralizing antibodies against VEGF or IL-8. As measured by ELISA technique, we found that fMLP-activated PMN (5 x 10(6)/ml) released 78 pg/ml IL-8 and 39 pg/ml VEGF within 1 h after stimulation. IL-8 release was blocked by actinomycin D or cycloheximide, but the inhibitors had no effect on VEGF release, suggesting that IL-8 secretion required de novo synthesis whereas VEGF was secreted from preformed stores. Accordingly, RT-PCR analysis revealed that IL-8 mRNA was upregulated on PMN stimulation, whereas the expression of VEGF mRNA was not affected. Moreover, supernatant derived from activated PMN induced upregulation of endothelial IL-8 mRNA expression, suggesting that release of VEGF and IL-8 from activated PMN may activate a paracrine feedforward mechanism involving endothelial IL-8. Moreover, VEGF-induced upregulation of endothelial IL-8 expression as well as sprouting of capillary-like structures was inhibited by a neutralizing anti-IL-8 antibody. These findings suggest that bacteria-derived tripeptides stimulate human PMN to release VEGF and IL-8, which activate endothelial cells and induce angiogenesis by a paracrine feedforward mechanism involving endothelial IL-8 upregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号