首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of antibody against serotonin-modulated protein SMP-69 on defence behavior command neurons L-RP11 were studied in semi-intact preparation of snail Helix lucorum. An increase in membrane excitability as well as selective facilitation of neural responses evoked with chemical sensory stimulation of the snail head (0.25-0.5% quinine solution) were determined 1-1.5 hours after antibody application to the neurons. The antibody did not change neural responses evoked with tactile stimulation of the snail head. These effects were similar to those found in L-RP11 neurons after serotonin or cAMP applications as well as after nociceptive sensitization of the snail. It was suggested that protein homologically related the SMP-69 in mammalians was involved in mechanisms of excitability as well as long-term specific plasticity regulation of L-RP11 neurons synaptic inputs from the head chemoreceptors in snail Helix lucorum.  相似文献   

2.
The procerebrum, a specialized structure for olfaction in terrestrial pulmonate molluscs, contains 20,000 to 50,000 small, uniformly sized neurons that increase in number with age. Here I show the likely source of neurons added to the procerebrum of Helix aspersa and that the rate of neuron addition depends on snail weight. After hatching, during the initial exponential growth phase, H. aspersa adds neurons to the procerebral apex by mitosis and from a cerebral tube. In the logistic growth phase beginning 30-40 days post-hatch, neurons also seem to be added to the procerebrum from the peritentacular and olfactory nerves, causing the rate of neuron addition to approximately double; but as in the earlier exponential growth phase, this rate remains a function of snail weight. This neuron addition throughout the life of the snail can be predicted by snail weight. In the two growth phases, the number of neurons in the procerebrum is given by logarithmic functions of snail weight. The results here for H. aspersa provide the basis for experiments to determine the peripheral origin and destination of neuronal precursors that are added to the procerebrum and to determine how neuron addition affects the function of the procerebrum.  相似文献   

3.
The long-term sensitization of avoidance reflex was produced in snail Helix pomatia, which led to the remarkable increase in the pneumostome closures period. The formation of long-term sensitization is also accompanied by increase in excitability of command neurons of this reflex. One of the possible mechanisms of this phenomenon is the depolarization of these cells. The quantitative redistribution of water-soluble proteins with relative mobility 0.54 0.42 0.40 was also observed in the identified neurons, both included in the avoidance reflex (command neurons) and non-included (bursting neurons, nerve cells of pool D). The protein with the relative mobility of 0.75 was unique for the nerve cells of neurosecretory pool D in sensitized snails, and was never found in control animals.  相似文献   

4.
A brief high-frequency stimulation of the anal nerve of the isolated nerve ring of snail Helix induced a pronounced increase in the amplitude of EPSPs, evoked in identified neurons of left parietal and visceral ganglions by low frequency (once in 5 min) stimulation of the same nerve. The amplitude of EPSP returned to the control level 30-120 min after tetanization. We called this effect long-term potentiation. A brief application of serotonin (10 microM) in the majority of neurons also induced lasting either 15-30 min or more than 2 hours facilitation of EPSP, evoked by anal nerve stimulation. Intracellular cAMP injections, being without effect on EPSP amplitude in many neurons, in certain neurons caused an increase in EPSP amplitude, lasting up to 30 min. It is suggested that the 3 factors shown to increase synaptic efficiency in molluscan neurons may have common mechanisms of action.  相似文献   

5.
The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.  相似文献   

6.
This paper reviews our work on the modulation of voltage-dependent Ca currents in identified snail neurons. Ca currents of snail neurones are enhanced or decreased by neurotransmitters. Serotonin and acetylcholine enhance the Ca current of identified neurons, the effect of serotonin being mediated by cGMP and cGMP-dependent protein kinase. Cholecystokinin (CCK8) and dopamine both decrease the Ca current of identified neurons. The effect of CCK8 is irreversible and involves the activation of protein kinase C. The dopamine-induced decrease in Ca current is reversible and involves an α40 subunit of a snail G protein immunologically and functionally related to αo of mammalian brain.  相似文献   

7.
Investigation of a possibility of long-term storage of frozen (-196 degrees C) viable neurons and nervous tissue is one of the central present day problems. In this study ultrastructural changes in neurons of frozen-thawed snail brain were examined as a function of time. We studied the influence of cryopreservation, cryoprotectant (Me2SO), cooling to 4-6 degrees C, and a prolonged incubation in physiological solution at 4-6 degrees C on dictyosomes of Golgi apparatus, endoplasmic reticulum (ER) cisternae and mitochondria. It has been found that responses of these intracellular structures of cryopreserved neurons to the above influences are similar: dissociation of Golgi dictyosomes, swelling of endoplasmic reticulum cisternae and mitochondrial cristae. Both freezing-thawing and cryoprotectant were seen to cause an increase in the number of lysosomes, liposomes, myelin-like structures, and to form large vacuoles. The structural changes in molluscan neurons caused by cryopreservation with Me2SO (2 M) were reversible.  相似文献   

8.
Dopamine induces a decrease in voltage-dependent Ca2+ current in identified neurons of the snail H. aspersa. This effect is blocked by intracellular injection of activated B. pertussis toxin and of an affinity-purified antibody against the alpha subunit of bovine Go protein. The dopamine effect is mimicked by intracellular injection of mammalian alpha o. In snail nervous tissue, pertussis toxin ADP-ribosylates a single protein band on SDS gels, and this band is recognized in immunoblots by the anti-alpha o antibody. We propose that this is a 40 kd alpha subunit of a molluscan G protein immunologically related to alpha o and that it mediates the effect of dopamine on Ca2+ currents in identified snail neurons.  相似文献   

9.
Stretch activation of the Aplysia S-channel   总被引:2,自引:0,他引:2  
The S-channel, a receptor-mediated K+ channel of Aplysia sensory neurons which functions in neuromodulation, bears a strong resemblance to the ubiquitous stretch-activated channels of snail neurons. Snail neuron stretch channels are stretch sensitive only in the patch, not at the macroscopic level, a situation which leaves open the question of their physiological role. If S-channels resemble snail stretch channels because both belong to the same general class of channels, the S-channel, too, should display stretch sensitivity in the patch. We show, using single-channel recording, that the S-channel can be activated by stretch. Furthermore, we show that Aplysia neurons in general have stretch-activated K+ channels. We suggest that the stretch-sensitive K+ channels of molluscan neurons and other preparations (e.g., Drosophila muscle, snail heart) are S-like channels, i.e., receptor-mediated channels which adventitiously exhibit mechanosensitivity in the patch.  相似文献   

10.
Polyclonal antibodies directed against laminin (LM), and against the A and B chains of reduced LM were used to identify antigenically related proteins in the extracellular matrix (ECM) of the snail Helisoma trivolvis. Immunofluorescence of snail central ganglionic rings using either the anti-LM or anti-B chain antibodies labeled the ECM within ganglionic sheaths as well as basal laminae surrounding the ganglia. Both the anti-LM and anti-B chain antibodies recognized a prominent, approximately 300-kD protein on immunoblots of a snail central ganglion preparation enriched in ECM components. The anti-A chain antibody failed to label any structures in sections of snail ganglia or to recognize any proteins on immunoblots of ganglionic ECM. A polyclonal antibody was raised against the approximately 300-kD snail protein. Immunofluorescence of snail ganglia with the anti- approximately 300-kD antibody gave a distribution of labeled structures comparable to that obtained with the anti-LM antibody. Immunofluorescent labeling of sections of snail muscle and salivary gland with the anti- approximately 300-kD antibody revealed a distribution of reactive protein characteristic of an ECM component. Probing immunoblots of ganglionic ECM with the anti- approximately 300-kD antibody revealed the recognition of the same approximately 300-kD protein as identified by the anti-LM antibodies. Media conditioned by Helisoma central ganglionic rings (CM) contains an unidentified neurite outgrowth promoting factor (NOPF). Immunoblots of CM probed with the anti-B chain and anti- approximately 300-kD antibodies reveal the recognition of a soluble approximately 300-kD protein similar to the approximately 300-kD protein identified in snail ECM. The ganglionic ECM preparation containing the approximately 300-kD protein supported outgrowth from cultured snail buccal neurons B5, and addition of anti- approximately 300-kD Fab fragments to CM abolished its outgrowth promoting activity. These results suggest that the approximately 300-kD ECM protein may be the NOPF in CM and/or functions in promoting neurite outgrowth.  相似文献   

11.
Helix Command Specific 2 (HCS2) gene is constantly expressed in parietal premotor (command) interneurons involved in control of the terrestrial snail Helix lucorum withdrawal behavior as a trigger element. It is also expressed under noxious conditions in other neurons presumably involved in withdrawal behavior. In this study we addressed the role of neuropeptide CNP4, encoded by gene HCS2, in the regulation of activity of the respiratory system, and in the influence on growth of isolated neurons in culture. It was shown that activity of the premotor interneuron elicits a direct effect (pneumostome closure), and a delayed intensification of respiratory movements. Application of CNP4 mimicked the delayed effects. Presence of the peptide CNP4 in solution for cultured neurons led to increase of neuronal growth. Immunochemical localization of the protein precursor encoded by gene HCS2 and peptide CNP4 in the cultured premotor interneurons revealed their preferential presence in the growth cones. The obtained results suggest that CNP4 may be secreted and involved in synergic regulation of behavior of a snail.  相似文献   

12.
Effects of tetracaine and caffeine on snail neurons were studied. They displayed depolarization and an increase of membrane conductance. In addition, tetracaine diminished membrane time constant whereas caffeine augmented hyperpolarizing after-potential. It was also shown that tetracaine blocks the caffeine effect. Microwave irradiation of snail neurons enhanced membrane conductance. This effect was not observed in neurons treated with tetracaine or injected with EDTA. Analysis of these results points to intracellular free calcium as a possible trigger of snail neuron microwave response.  相似文献   

13.
Polyclonal antibodies directed against laminin (LM), and against the A and B chains of reduced LM were used to identify antigenically related proteins in the extracellular matrix (ECM) of the snail Helisoma trivolvis Immunofluorescence of snail central ganglionic rings using either the anti-LM or anti-B chain antibodies labeled the ECM within ganglionic sheaths as well as basal laminae surrounding the ganglia. Both the anti-LM and anti-B chain antibodies recognized a prominent, ~300-kD protein on immunoblots of a snail central ganglion preparation enriched in ECM components. The anti-A chain antibody failed to label any structures in sections of snail ganglia or to recognize any proteins on immunoblots of ganglionic ECM. A polyclonal antibody was raised against the ~300-kD snail protein. Immunofluorescence of snail ganglia with the anti-~300-kD antibody gave a distribution of labeled structures comparable to that obtained with the anti-LM antibody. Immunofluorescent labeling of sections of snail muscle and salivary gland with the anti-~300-kD antibody revealed a distribution of reactive protein characteristic of an ECM component. Probing immunoblots of ganglionic ECM with the anti- ~300-kD antibody revealed the recognition of the same ~ 300-kD protein as identified by the anti-LM antibodies. Media conditioned by Helisoma central ganglionic rings (CM) contains an unidentified neurite outgrowth promoting factor (NOPF). Immunoblots of CM probed with the anti-B chain and anti- ~300-kD antibodies reveal the recognition of a soluble ~300-kD protein similar to the ~300-kD protein identified in snail ECM. The ganglionic ECM preparation containing the ~300-kD protein supported outgrowth from cultured snail buccal neurons B5, and addition of anti- ~300-kD Fab fragments to CM abolished its outgrowth promoting activity. These results suggest that the ~300-kD ECM protein may be the NOPF in CM and /or functions in promoting neurite outgrowth.  相似文献   

14.
Two groups of rats with different level of motor activities: high- and low-active animals, were distinguished. The blockade of dopamine receptors by haloperidol led to depression of locomotor activity in both groups of rats; in grape snails, haloperidol caused a decrease of the velocity of locomotor responses. In was found that within 5 minutes of intravenous injection of haloperidol the excitability of spinal centers of rats decreased; but in 30 minutes in started restoring. Chronic application of the preparation depressed the effect of posttetanic potentiation of H-response in gastrocnemius muscle of spinal rats. In command neurons of grape snail, chronic injections of haloperidol causes a significant hyperpolarization shift of membrane potential and an increase of threshold of the generation of action potential. It was shown that the selective pharmacological inhibition of dopaminergic system of the brain led to a decrease of excitability in some determined neurons of the snail and spinal motor centers of rats, as well as inhibited the locomotor responses both in vertebrate and in invertebrate animals.  相似文献   

15.
The neurons of the dorsal surface of snail Helix subesophageal ganglia respond similarly to the application of serotonin and the intracellular cAMP injection. These responses represent membrane depolarization. They increase in amplitude with membrane hyperpolarization and have a reverse potential between +10 and -30 mV. Presumably, these responses are associated with increased conductance for several ions. The values of the reverse potentials of serotonin and cAMP responses coincide in 7 out of 17 cells. Phosphodiesterase inhibitor theophylline caused a reversible increase in the amplitude and duration of both serotonin and cAMP responses and, used at a concentration of 1 mM, simulated them. The results obtained meet 2 out of 4 criteria demonstrating that cyclic nucleotides mediate a neurotransmitter response. It is suggested that cAMP may act as a second messenger in excitatory serotonin responses of snail Helix neurons.  相似文献   

16.
1. Opioid- and FMRFamide (FMRFa)-ergic systems are believed to play antagonistic behavioral roles in both higher and lower animals. In our previous experiments on a snail, behavioral choice has been demonstrated to be dependent on a balance between FMRFa and enkephalins [7]. Here, we examined if the disturbance of the balance causes changes in the activity of both systems. Opiate receptor blocker naloxone was applied and its effect on c-jun expression of met-enkephalin (MEnk)- and FMRFa-ergic neurons was examined immunocytochemically in terrestrial gastropod snail Cepaea nemoralis. 2. In control, untreated snails, central neurons with c-jun/AP-1-like-immunoreactivity were found to occur. These included MEnk-, FMRFa- and 5HT-immunoreactive (-ir) neurons, as was revealed by double-labelling. 3. After treatment with naloxone for 4 h, the following changes were observed: (i) increase in the number of MEnk-ir neurons; increase in the number of neurons showing c-jun/AP-1 and MEnk double-labeling; (ii) disappearance of c-jun/AP-1-immunoreactivity from some FMRFa-ir neurons. 4. It is suggested that immediate early genes are involved in the mechanisms responsible for the reciprocal regulation of the opioid and antiopioid neuropeptide systems.  相似文献   

17.
Summarized literature and experimental author's data are presented concerning the structure of the nervous system and identification of individual neurons in the snail Helix lucorum. Information about especially well-known neurons is given in a table, maps of the ganglia are presented altogether with the results of retrograde staining of different cerebral and suboesophageal nerves. Are given the references concerning morphology of the central nervous system of the snail and identifiable neurons.  相似文献   

18.
Beta-nerve growth factor (NGF) is a protein necessary for the survival and maintenance of sympathetic and sensory neurons that appears to be produced by the target tissues of these neurons in vivo. Both denervation and the culture of explants of one model target, the rat iris, leads to an increase in the NGF content, suggesting that innervating neurons may regulate a step in synthesis or turnover of NGF. To determine whether there is a change in synthesis controlled at the mRNA level, the rat iris has been assayed for its content of NGF mRNA after surgical and chemical denervation and after explant into culture. Using a sensitive blot hybridization assay, a large, rapid increase in the content of NGF mRNA was observed upon explant of the rat iris. The increase was readily detectable within 1 h, reached a maximum increase of 10- to 20-fold by 6 to 12 h, and was still evident after 3 d in culture. The distribution of NGF mRNA in different areas of the iris does not change during this time. This rapid increase in NGF mRNA is also seen in the fully innervated iris in vivo after trauma to the anterior chamber. In contrast, denervation to varying degrees in situ had no effect on NGF mRNA levels. Neither removal of sympathetic innervation by surgical or chemical methods nor combined surgical removal of sympathetic and sensory innervation detectably altered NGF mRNA content. Thus, denervation of the rat iris in situ does not cause the observed accumulation of NGF by increasing the level of NGF mRNA, and the increase in NGF content must be due to other factors.  相似文献   

19.
Molecular and cellular mechanisms of the interrelations between the feeding and defense behaviour were studied in a snail Helix lucorum. The dynamics of defense reactions was investigated in snails with different levels of feeding motivation. Defense reactions were suppressed in hungry snails, while 15-20 min after the beginning of food intake they were facilitated. The facilitation depended on a duration of starvation. Injection of 0.5 ml of 5 mM glucose solution (up to the glucose level in the haemolymph of a food satiated snail, 1.6-2.0 mM) or injections of 20-30 ng of synthetic analogues of the gastrointestinal peptides (pentagastrin of octapeptide cholecystokinin, CCK-8) facilitated the defense reaction in a hungry snail. Parameters of the facilitation were similar to those in the period of food intake. Activity of the command neurons of defense behaviour (L-PPL1) after the carrot juice application to the lip of a semi-intact preparation from a hungry snail was glucose-dependent. Similar glucose-dependent changes of L-PPL1 activity were found after CCK-8, but not FMRFamide application during the perfusion with 0.5 mM glucose. L-PPL1, but not L-PPa2-3 neurons were most sensitive to glucose and CCK-8 level changes in the Ringer solution. Adaptive significance of the behavioural phenomena as well as glucose and gastrin/CCK-like peptide participation in these processes are discussed.  相似文献   

20.
Results are presented on the development of a novel biosensor which will use neurons or neuronal components as both the recognition elements and primary transducers for analyte quantitation. This concept is demonstrated and evaluated by exposing identified neurons from the visceral ganglia of the pond snail Limnea stagnalis to the model analyte serotonin. Experiments reveal a reversible, concentration-dependent increase in the rate of spontaneous action potential generation, over a concentration range of four orders of magnitude. Studies with the antagonist methysergide verify that this response is mediated through serotonin-sensitive receptors. Exposure of the neurons to serotonin causes the firing frequency to rapidly increase to a maximum and then slowly diminish to a sub-optimal level. It was found that the maximum frequency provides an indication of chemical concentration that is repeatable. Data are also presented which further advanced the field of neuronal biosensing by demonstrating both the effects of cell to cell variability on response reproducibility and the effects of the desensitizing response on the operation of a neuron-based sensor in both a continuous and discontinuous mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号