首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There are substantial changes in maternal skeletal dynamics during pregnancy, lactation, and after lactation. The purpose of this study was to correlate changes in cortical and cancellous bone mass, structure, and dynamics with mechanical properties during and after the first reproductive cycle in rats. Rats were mated and groups were taken at parturition, end of lactation and 8 wk after weaning, and were compared with age-matched, nulliparous controls. Measurements were taken on femoral cortical bone and lumbar vertebral body cancellous bone. At the end of pregnancy, there was an increase in cortical periosteal bone formation and an increase in cortical volume, but a suppression of turnover in cancellous bone with no change in cancellous or cortical mechanical properties. Lactation was associated with a decrease in cortical and cancellous bone strength with a decrease in bone volume, but an increase in turnover on cancellous and endocortical surfaces. After lactation, there was a partial or full restoration of mechanical properties. This study demonstrates substantial changes in bone mechanics that correlate with changes in bone structure and dynamics during the first reproductive cycle in rats. The greatest changes were observed during the lactation period with partial or full recovery in the postlactational period.  相似文献   

2.
One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.  相似文献   

3.
Systemic treatment of intact and ovariectomized rats with basic fibroblast growth factor (bFGF) has strong bone anabolic effects. These effects include marked increases in osteoblast number and activity along cancellous and endocortical bone surfaces, which result in accumulation of osteoid and augmentation of cancellous and cortical bone mass after only short-term treatment with bFGF. Osteoclast surface is markedly decreased in bFGF-treated rats, but this finding may be secondary to the extensive osteoid surface in these animals. Some undesirable skeletal effects of the growth factor include impaired bone mineralization and formation of structurally inferior woven bone. The lack of a bone anabolic response to bFGF at skeletal sites with fatty marrow and along the periosteal surface of cortical bone is also disappointing. Despite these disadvantages, bFGF stimulates cancellous bone formation to such a great extent that it may eventually be considered for use in patients with severe osteoporosis who are unresponsive to conventional therapies, provided that local delivery of the growth factor to bone can be achieved to avoid systemic side effects.  相似文献   

4.
Intermittent treatment with parathyroid hormone (PTH) increases bone formation and prevents bone loss in hindlimb-unloaded (HLU) rats. However, the mechanisms of action of PTH are incompletely known. To explore possible interactions between weight bearing and PTH, we treated 6-mo-old weight-bearing and HLU rats with a human therapeutic dose (1 microg.kg(-1).day(-1)) of human PTH(1-34) (hPTH). Cortical and cancellous bone formation was measured in tibia at the diaphysis proximal to the tibia-fibula synostosis and at the proximal metaphysis, respectively. Two weeks of hindlimb unloading resulted in a dramatic decrease in the rate of bone formation at both skeletal sites, which was prevented by PTH treatment at the cancellous site only. In contrast, PTH treatment increased cortical as well as cancellous bone formation in weight-bearing rats. Two-way ANOVA revealed that hPTH and HLU had independent and opposite effects on all histomorphometric indexes of bone formation [mineral apposition rate (MAR), double-labeled perimeter (dLPm), and bone formation rate (BFR)] at both skeletal sites. The bone anabolic effects of weight bearing and hPTH on dLPm and BFR at the cortical site were additive, as were the effects on MAR at the cancellous site. In contrast, weight bearing and hPTH resulted in synergistic increases in cortical bone MAR and cancellous bone dLPm and BFR. We conclude that weight bearing and PTH act cooperatively to increase bone formation by resulting in site-specific additive and synergistic increases in indexes of osteoblast number and activity, suggesting that weight-bearing exercise targeted to osteopenic skeletal sites may improve the efficacy of PTH therapy for osteoporosis.  相似文献   

5.
The heterogeneity and differentiation potential of mitotically active cells in the adult brain were studied by labeling adult rats with BrdU, and isolating an enriched population of cycling cells from neocortex and from subcortical white matter. The majority of this population isolated from either brain region labeled with O4, an early oligodendrocyte marker. In tissue culture, these O4(+) progenitors acquired galactocerebroside, a glycolipid of mature oligodendrocytes, but not GFAP, an intermediate filament of astrocytes. A minority population expressed the intermediate filament protein, vimentin, but not O4. This population expressed GFAP after several days in culture. A third population of cycling cells, expressing the gangliosides labeled with the A2B5 antibody, represented a minority population in subcortical white matter, but one of the major cycling populations in cortex, with substantial overlap with O4. Small populations of cycling NG2(+) cells also were observed. Thus, the cycling cells in the adult brain are heterogeneous, and the majority appear to belong to glial lineages.  相似文献   

6.
The purpose of the present study was to clarify the differences in the alterations of cellular activities of osteoblasts and osteoclasts, mineralization, and bone mass in cortical and cancellous bones of young growing rats with mild calcium deficiency. Twenty female Sprague-Dawley rats, 6 weeks of age, were randomized by the stratified method into two groups with 10 rats in each group: 0.5% (normal) calcium diet group and 0.1% (low) calcium diet group. After 10 weeks of feeding, bone histomorphometric analysis was performed on cancellous bone of the proximal tibia as well as cortical bone of the tibial shaft. Calcium deficiency increased eroded surface (ES/bone surface [BS]) and the number of osteoclast (N.Oc/BS) with an increase in osteoblast surface (ObS/BS), but decreased bone formation rate (BFR/BS) in cancellous bone. However, cancellous bone volume was preserved, while cortical bone area was decreased as a result of decreased periosteal bone gain and enlargement of the marrow cavity. These results suggest that short-term mild calcium deficiency in young growing female rats increased bone resorption by increasing osteoclastic recruitment, and suppressed mineralization followed by increased osteoblastic recruitment in cancellous bone, but cancellous bone loss was counteracted through redistribution of calcium from cortical bone to cancellous bone.  相似文献   

7.
8.
Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.  相似文献   

9.
The heterogeneity and differentiation potential of mitotically active cells in the adult brain were studied by labeling adult rats with BrdU, and isolating an enriched population of cycling cells from neocortex and from subcortical white matter. The majority of this population isolated from either brain region labeled with O4, an early oligodendrocyte marker. In tissue culture, these O4+ progenitors acquired galactocerebroside, a glycolipid of mature oligodendrocytes, but not GFAP, an intermediate filament of astrocytes. A minority population expressed the intermediate filament protein, vimentin, but not O4. This population expressed GFAP after several days in culture. A third population of cycling cells, expressing the gangliosides labeled with the A2B5 antibody, represented a minority population in subcortical white matter, but one of the major cycling populations in cortex, with substantial overlap with O4. Small populations of cycling NG2+ cells also were observed. Thus, the cycling cells in the adult brain are heterogeneous, and the majority appear to belong to glial lineages. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 75–86, 2001  相似文献   

10.
The aim of this study was to determine if severe malnutrition affects the proportion of proliferating bone marrow cells in malnourished rats during lactation. Sister chromatid staining of metaphases was used as a parameter, as well as the morphology, size and color of bromodeoxyuridine labeled interphase nuclei. The BrdU proliferation labeling index was statistically lower in malnourished rats (20.4%), than in well-nourished controls (35.1%). A difference was also found between the two groups in the proportion of metaphases in first, second and third or successive cell cycle. The average generation time was longer in the malnourished group: 15.3 h, against 11.8 h for the controls. These results indicate that severe malnutrition affects both the proportion of bone marrow proliferating cells and their cell kinetics.  相似文献   

11.
Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.  相似文献   

12.
To examine the local actions of IGF signaling in skeletal tissue in a physiological context, we have used Cre-mediated recombination to disrupt selectively in mouse osteoblasts the gene encoding the type 1 IGF receptor (Igf1r). Mice carrying this bone-specific mutation were of normal size and weight but, in comparison with normal siblings, demonstrated a striking decrease in cancellous bone volume, connectivity, and trabecular number, and an increase in trabecular spacing. These abnormalities correlated with a striking decrease in the rate of mineralization of osteoid that occurred despite an unexpected osteoblast and osteoclast hyperactivity, detected from the significant increments in both osteoblast and erosion surfaces. Our findings indicate that IGF1 is essential for coupling matrix biosynthesis to sustained mineralization. This action is likely to be particularly important during the pubertal growth spurt when rapid bone formation and consolidation are required.  相似文献   

13.
The cytokine receptor activator of nuclear factor kappa B ligand (RANKL), encoded by the Tnfsf11 gene, is essential for osteoclastogenesis and previous studies have shown that deletion of the Tnfsf11 gene using a Dmp1-Cre transgene reduces osteoclast formation in cancellous bone by more than 70%. However, the Dmp1-Cre transgene used in those studies leads to recombination in osteocytes, osteoblasts, and lining cells making it unclear whether one or more of these cell types produce the RANKL required for osteoclast formation in cancellous bone. Because osteoblasts, osteocytes, and lining cells have distinct locations and functions, distinguishing which of these cell types are sources of RANKL is essential for understanding the orchestration of bone remodeling. To distinguish between these possibilities, we have now created transgenic mice expressing the Cre recombinase under the control of regulatory elements of the Sost gene, which is expressed in osteocytes but not osteoblasts or lining cells in murine bone. Activity of the Sost-Cre transgene in osteocytes, but not osteoblast or lining cells, was confirmed by crossing Sost-Cre transgenic mice with tdTomato and R26R Cre-reporter mice, which express tdTomato fluorescent protein or LacZ, respectively, only in cells expressing the Cre recombinase or their descendants. Deletion of the Tnfsf11 gene in Sost-Cre mice led to a threefold decrease in osteoclast number in cancellous bone and increased cancellous bone mass, mimicking the skeletal phenotype of mice in which the Tnfsf11 gene was deleted using the Dmp1-Cre transgene. These results demonstrate that osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling cancellous bone.  相似文献   

14.
Regeneration of amputated zebrafish fin rays from de novo osteoblasts   总被引:1,自引:0,他引:1  
Determining the cellular source of new skeletal elements is critical for understanding appendage regeneration in amphibians and fish. Recent lineage-tracing studies indicated that zebrafish fin ray bone regenerates through the dedifferentiation and proliferation of spared osteoblasts, with limited if any contribution from other cell types. Here, we examined the requirement for this mechanism by using genetic ablation techniques to destroy virtually all skeletal osteoblasts in adult zebrafish fins. Animals survived this injury and restored the osteoblast population within 2 weeks. Moreover, amputated fins depleted of osteoblasts regenerated new fin ray structures at rates indistinguishable from fins possessing a resident osteoblast population. Inducible genetic fate mapping confirmed that new bone cells do not arise from dedifferentiated osteoblasts under these conditions. Our findings demonstrate diversity in the cellular origins of appendage bone and reveal that de novo osteoblasts can fully support the regeneration of amputated zebrafish fins.  相似文献   

15.
Studies on BrdU labeling of hematopoietic cells: stem cells and cell lines   总被引:4,自引:0,他引:4  
Studies using chronic in vivo BrdU exposure, isolating primitive stem cells, and determining BrdU labeling, indicate that stem cells cycle. BrdU is also incorporated into DNA during damage/repair. DNA, which has incorporated BrdU due to cycle transit is heavier than normal, while the density of DNA with damage/repair incorporation is intermediate. DNA density of purified lineage-rhodamine low (rho(low)) Hoechst low (Ho(low)) stem cells or FDC-P1 cell line cells-was assessed in vitro, after exposure to cytokines and BrdU (cycling model) or cytokines and BrdU with bleomycin to induce strand breaks and hydroxyurea to halt cycle progression (damage/repair model). We determined DNA density using cesium chloride (CsCl) gradients and either fluorometry or dot blot chemiluminesence. DNA from BrdU labeled cycling Lin-rho(lo)Ho(lo) or FDC-P1 cells was heavier than normal DNA, while damage repair DNA had an intermediate density. We then assessed BrdU labeling of Lin-rho(lo)Ho(lo) cells in vivo. We found that 70.9% of lin-rho(lo)Ho(lo) cells labeled at 5 weeks. DNA density of these cells was low, in the damage/repair range, but similar results were obtained with stem cells, which had proliferated in vivo. Dilution of BrdU in in vitro culture of proliferating FDC-P1 cells also resulted in damage/repair density. We conclude that in vitro BrdU labeling models can distinguish between proliferation and damage/repair, but that we cannot obtain high enough in vivo levels to address this issue. All together, while we cannot absolutely exclude damage/repair as contributing to stem cell BrdU labeling, the data indicate that primitive bone marrow stem cells are probably a cycling population.  相似文献   

16.
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.  相似文献   

17.
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.  相似文献   

18.
Lysophosphatidic acid (LPA), a pleiotropic signalling lipid is assuming growing significance in osteoblast biology. Although committed osteoblasts from several mammalian species are receptive to LPA far less is known about the potential for LPA to influence osteoblast formation from their mesenchymal progenitors. An essential factor for both bone development and post-natal bone growth and homeostasis is the active metabolite of vitamin D3, calcitriol (D3). Previously we reported how a combination of LPA and D3 synergistically co-operated to enhance the differentiation of immature human osteoblasts. Herein we provide evidence for the formation of human osteoblasts from multiple, primary human bone marrow derived stromal (stem) cells (hBMSCs). Importantly osteoblast development from hBMSCs only occurred when LPA was administered as a complex with albumin, its natural carrier. Collectively our findings support a co-operative role of LPA and D3 in osteoblastogenesis, findings which may aid the development of novel treatment strategies for bone repair.  相似文献   

19.
Osteopetrosis is a skeletal condition in which a generalized radioopacity of bone is caused by reduced resorption of bone by osteoclasts. However, it has recently been shown that during skeletal development in several osteopetrotic rat mutations specific aberrations occur in gene expression reflecting the activity of the bone forming cells, osteoblasts, and the development of tissue organization. To evaluate their pathogenetic significance, progressive osteoblast differentiation was studied in vitro. Primary cultures of normal osteoblasts undergo a sequential expression a cell growth and tissue-related genes associated with development of skeletal tissue. We report that osteoblast cultures can be established from one of these mutants, toothless; that these cells in vitro exhibit similar aberrations in gene expression during cell proliferation and extracellular matrix formation and mineralization observed in vivo; and that an accelerated maturation sequence by mutant osteoblasts mimics the characteristic skeletal sclerosis of this disease. These data are the first direct evidence for an intrinsic osteoblast defect in osteopetrosis and establish an in vitro model for the study of heritable skeletal disorders. © 1994 Wiley-Liss, Inc.  相似文献   

20.
At least some cells within bone marrow stromal populations are multipotential (i.e., differentiate in vitro into osteoblasts, chondrocytes, and adipocytes) and thus designated skeletal stem cells (SSCs) or mesenchymal stem cells (MSCs) amongst other names. Recently, a subpopulation of stromal cells, notably osteoblasts or their progenitors, has been identified as a definitive regulatory component of the hematopoietic stem cell (HSC) niche. Thus, the development of methods for purifying not only SSCs but cells comprising the HSC niche is of interest. Here, we report a method for purifying a novel bone marrow‐derived population with a high frequency of osteoprogenitors and high expression levels of osteoblast differentiation markers (highly purified osteoprogenitors (HipOPs)) as well as markers of the bone niche for HSCs. In vivo transplantation experiments demonstrated that donor HipOPs differentiated into not only osteoblasts, osteocytes and cells around sinusoids but also hematopoietic cells. Thus, HipOPs represent a novel population for simultaneous reconstruction of bone and bone marrow microenvironments. J. Cell. Biochem. 108: 368–377, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号