首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic-type tissue induced in the livers of rats treated with polychlorinated biphenyls was characterized by transmission electron microscopy and high-resolution immunocytochemistry. The cells of pancreatic-type tissue were arranged as acini and in small groups. By electron microscopy the pancreatic-type tissue showed features very similar to normal pancreatic acinar tissue, such as well developed rough endoplasmic reticulum (RER), large numbers of mature zymogen granules, and a basally located nucleus. Protein A-gold imunocytochemical technique showed localization of amylase and trypsinogen over the zymogen granules and RER. These findings confirm that this tissue in the liver is morphologically and functionally identical to pancreatic acinar tissue.  相似文献   

2.
We have previously demonstrated that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling is essential for pancreatic regeneration after partial pancreatectomy in mice. In the present study, we examined a role of PI3K/Akt signaling for pancreatic duct cell differentiation into insulin-producing cells. Epithelial-like cells were isolated from mouse pancreas and confirmed to be positive for a duct cell marker cytokeratin-20 (CK-20) but negative for insulin. Incubation of these cells with epidermal growth factor, exhibited a gradual increase in Akt phosphorylation and expression of pancreatic duodenal homeobox-1 (PDX-1), a regulator of β-cell differentiation. Three weeks later, these CK-20-positive cells were noted to express insulin as determined by immunofluorescent double-staining. Akt phosphorylation, PDX-1 expression, and insulin production were effectively reduced by blocking the PI3K/Akt pathway using siRNA to the p85α regulatory subunit of PI3K. Our results demonstrate that PI3K/Akt activation has a critical role for pancreatic duct cell differentiation into insulin-producing cells.  相似文献   

3.
The cytomatrix at the active zone (CAZ) has been implicated in defining the site of Ca2+-dependent exocytosis of neurotransmitters. Here, we demonstrate the expression and function of ELKS, a protein structurally related to the CAZ protein CAST, in insulin exocytosis. The results of confocal and immunoelectron microscopic analysis showed that ELKS is present in pancreatic beta cells and is localized close to insulin granules docked on the plasma membrane-facing blood vessels. Total internal reflection fluorescence microscopy imaging in insulin-producing clonal cells revealed that the ELKS clusters are less dense and unevenly distributed than syntaxin 1 clusters, which are enriched in the plasma membrane. Most of the ELKS clusters were on the docking sites of insulin granules that were colocalized with syntaxin 1 clusters. Total internal reflection fluorescence images of single-granule motion showed that the fusion events of insulin granules mostly occurred on the ELKS cluster, where repeated fusion was sometimes observed. When the Bassoon-binding region of ELKS was introduced into the cells, the docking and fusion of insulin granules were markedly reduced. Moreover, attenuation of ELKS expression by small interfering RNA reduced the glucose-evoked insulin release. These data suggest that the CAZ-related protein ELKS functions in insulin exocytosis from pancreatic beta cells.  相似文献   

4.
The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca2+ channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.  相似文献   

5.
Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.  相似文献   

6.
SULFATE METABOLISM IN PANCREATIC ACINAR CELLS   总被引:8,自引:6,他引:2       下载免费PDF全文
The metabolism of inorganic sulfate in pancreatic acinar cells was studied by electron microscope radioautography in mice injected with sulfate-35S. Labeled sulfate was concentrated in the Golgi complex at 10 min. Within 30 min, much of the radioactive material had been transferred to condensing vacuoles. These were subsequently transformed into zymogen granules. By 4 hr after injection, some of the zymogen granules with radioactive contents were undergoing secretion, and labeled material was present in the pancreatic duct system. The Golgi complex in pancreatic acinar cells is known to be responsible for concentrating and packaging digestive enzymes delivered to it from the endoplasmic reticulum. Our work demonstrates that the Golgi complex in these cells is also engaged in the manufacture of sulfated materials, probably sulfated mucopolysaccharides, which are packaged along with the enzymes in zymogen granules and released with them into the pancreatic secretion.  相似文献   

7.
Atomic force microscopy reveal pit-like structures typically containing three or four, approximately 150 nm in diameter depressions at the apical plasma membrane in live pancreatic acinar cells. Stimulation of secretion causes these depressions to dilate and return to their resting size following completion of the process. Exposure of acinar cells to cytochalasin B results in decreased depression size and a loss in stimulable secretion. It is hypothesized that depressions are the fusion pores, where membrane-bound secretory vesicles dock and fuse to release vesicular contents. Zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, contain the starch digesting enzyme, amylase. Using amylase-specific immunogold labeling, localization of amylase at depressions following stimulation of secretion is demonstrated. This study confirms depressions to be the fusion pores in pancreatic acinar cells. High-resolution images of the fusion pore in live pancreatic acinar cells reveal the structure in much greater detail than has previously been observed.  相似文献   

8.
Immature secretory granules (ISG's) are sites of segregation of proteins destined for secretion by unregulated pathways from those stored in mature secretory granules in endocrine cells. To determine whether significant soluble protein sorting occurs in ISG's, the secretion of soluble versions of the pancreatic protein GP2 (GP2-GPI(-)) and placental alkaline phosphatase (SEAP) was analyzed in NIT-1 cells. By immunofluorescence microscopy, neither protein localized to SG's in transfected cells. Their secretion was secretagogue-independent in pulse-chase radiolabeling experiments even at early times of chase, while a small increase in the secretion of amylase, which is known to enter ISG's, could be detected. Finally, in sucrose gradient fractionation experiments, SEAP was present in light density fractions. We conclude that while some proteins, such as amylase, have a limited intrinsic capacity to enter ISG's, the segregation of proteins secreted via the constitutive pathway from SG content proteins occurs primarily in the trans Golgi network.  相似文献   

9.
The present study concerns pancreatic beta cells from rat foetus at 18, 19 and 21 days of gestation. On micrographs, the cytoplasm of beta cells was subdivided into 3 zones: one zone corresponding roughly to the cell web, a second zone just underlying the cell web, and a third zone comprising the remaining cytoplasm. The secretory granules present in each zone were counted; in the cell web, granules fused with plasma membrane were counted separately. During later foetal stages the increase in the frequency of granule to plasma membrane fusions parallels the increase in blood insulin levels, and the total number of granules in beta cells increases in parallel with the pancreatic insulin content. Therefore, as the beta cell matures, both secretion and biosynthesis of insulin increase sharply. The observed changes in the distribution of the granules in the different zones of the cytoplasm with the foetal age suggests that the cell web controls the access of the granules to the plasma membrane. The morphometric technique used allows a direct determination, at the cellular level, of even small variations in exocytosis-mediated secretory discharge and suggests a regulatory role of the cell web.  相似文献   

10.
GP2 is a glycoprotein found in pancreatic acinar cells. Its subcellular distribution suggests that it may be involved both in exocytosis and endocytosis. Immunocytochemical studies have demonstrated GP2 to be present on the membrane and in the matrix of zymogen granules, on Golgi saccules, on the apical and basolateral surfaces of the plasma membrane, and in the lumina of acini. In addition, this protein was observed in small vacuoles and tubular structures previously identified as "basal lysosomes," "snake-like tubules," and in lysosomes. Because the latter group of structures are involved in endocytosis, it is possible that GP2 may be involved in this phenomenon. GP2 was readily detectable in pancreatic juice and was totally sedimentable by ultracentrifugation, as assessed by Western blot analysis. Induced lysis of isolated zymogen granules also caused release of GP2 in a sedimentable form which, by electron microscopy, appeared as a fibrillar structure. Immunocytochemical localization of amylase was studied in parallel with GP2 and was found in the secretory product to be associated with thread-like structures, presumably the pancreatic thread protein. The physiological significance of these observations is discussed.  相似文献   

11.
Exophilin8/MyRIP/Slac2-c is an effector protein of the small GTPase Rab27a and is specifically localized on retinal melanosomes and secretory granules. We investigated the role of exophilin8 in insulin granule trafficking. Exogenous expression of exophilin8 in pancreatic β cells or their cell line, MIN6, polarized (exophilin8-positive) insulin granules at the cell corners, where both cortical actin and the microtubule plus-end-binding protein, EB1, were present. Mutation analyses indicated that the ability of exophilin8 to act as a linker between Rab27a and myosin Va is essential for its granule-clustering activity. Moreover, exophilin8 and exophilin8-associated insulin granules were markedly stable and immobile. Total internal reflection fluorescence microscopy indicated that exophilin8 restricts the motion of insulin granules at a region deeper than that where another Rab27a effector, granuphilin, accumulates docked granules directly attached to the plasma membrane. However, the exophilin8-induced immobility of insulin granules was eliminated upon secretagogue stimulation and did not inhibit evoked exocytosis. Furthermore, exophilin8 depletion prevents insulin granules from being transported close to the plasma membrane and inhibits their fusion. These findings indicate that exophilin8 transiently traps insulin granules into the cortical actin network close to the microtubule plus-ends and supplies them for release during the stimulation.  相似文献   

12.
Membrane recycling in pancreatic acinar cells involves endocytic vesicle formation at the apical cell surface and rapid membrane traffic to the Golgi complex. During this process a small amount of extracellular content is taken up from the acinar lumen. In order to determine whether secretory proteins already released into the pancreatic acinar lumen are reinternalized during membrane retrieval, 3H-labeled amylase or 125I-labeled secretory proteins were reinfused through the pancreatic duct until the lumina were reached. Tissue samples from various time points were prepared for light and electron microscope autoradiography. The observations showed that [3H]amylase and, to a lesser extent, the 125I-labeled secretory proteins were internalized at the apical cell surface and rapidly (within 2-5 min) transferred to the Golgi cisternae and the condensing vacuoles; only a minor proportion of silver grains was observed over lysosomes. In addition, at later time points, mature secretion granules close to the Golgi complex became labeled. The results indicate that exocytosis in the rat exocrine pancreas does not operate at 100% efficiency; part of the exported amylase and part of the total secretion product are reinternalized concomitantly with the endocytic removal of plasma membrane and are copackaged together with newly synthesized secretory proteins.  相似文献   

13.
The minced pancreas of the neonatal rat was cultured for 35 days in a pancreatic chamber which was constructed of a plastic tube and an ultrafiltration membrane. Insulin and amylase secreted from this pancreatic chamber into the culture medium were measured. During the experiment, the concentration of glucose in the culture medium was changed between 5.5 and 16.5 mM at 2-3 day intervals in order to determine the insulin secretory response of the pancreatic tissue. Insulin secretion was markedly increased in response to 16.5 mM glucose. The ratio of insulin secretion to amylase secretion in the culture medium increased with the advance of culture days although secretions of both insulin and amylase decreased individually. On the 7th culture day, short term incubations were performed to test with various insulin secretagogues; obvious insulin release into the incubation medium was observed. These results show that the pancreatic chamber also in vitro secretes insulin rapidly and significantly in response to various stimuli; that by longer culture of a neonatal rat pancreas in this device, insulin secretory cells without exocrine tissue would be obtained without using digestive enzymes; that application of a pancreatic chamber for a pancreatic transplantation may be feasible.  相似文献   

14.
Primary cultures of rat pancreatic acinar cells in serum-free medium   总被引:5,自引:0,他引:5  
Summary Rat pancreatic acinar cells were isolated and cultured in Ham's F12 medium with 15% bovine calf serum. Caerulein, insulin, somatostatin, and dexamethasone (DEX) had no effect on intracellular or secreted amylase in these cultured cells. A serum-free medium, using Waymouth's MB 752/1 supplemented with albumin, epidermal growth factor (EGF), DEX, and HEPES, was then developed to avoid serum factors that might mask hormonal effects. In this SF medium, pancreatic acinar, cells maintained the morphological and ultrastructural characteristics of freshly isolated cells and secreted amylase in response to the secretagogue, carbamyl choline. Insulin, at a concentration of 1 μg/ml, significantly increased intracellular and secreted amylase activity after 3 d. This model cell system can be used to study the regulation of the synthesis of amylase and other pancreatic enzymes in vitro.  相似文献   

15.
Most, if not all, endocrine cells seem capable of synthesizing and storing more than one hormone. Such cellular colocalization of hormones can be due either to the presence of two or more specific granules within the cells or to colocalization of the hormones within a single granule. The present study was performed to clarify the subcellular localization of insulin, glucagon, somatostatin, and pancreatic polypeptide within the endocrine cells of the human and porcine pancreas during fetal development, with special reference to possible colocalization of the hormones. The tissue specimens were processed for ultrastructural cytochemistry using Lowicryl as embedding medium. An immunogold labeling technique was used with two parallel, but not interacting, antibody chains. Sections from each specimen were double labeled in different combinations giving a complete covering of the four major islet hormones. During fetal life (50-90 days prenatally in porcine pancreas, 14 weeks gestation in the human pancreas) several hormones were demonstrated, not only in the same endocrine cells, but also in the same secretory granules (polyhormonal granules). Costorage of insulin, glucagon, somatostatin, and pancreatic polypeptide was demonstrated in granules in pancreatic endocrine fetal cells. At an early fetal stage, the endocrine cells contained either dense, round granules or pale, heteromorphous granules. With increasing age and maturation of the endocrine cells, structural differentiation of the secretory granules was found to be associated with a gradual disappearance of the polyhormonal granules. The first genuine monohormonal cell to appear in the porcine fetus was the pancreatic polypeptide cell (at 70 days gestation); it was followed by the somatostatin-producing endocrine cell. Mature insulin- and glucagon-producing cells were only demonstrated after birth. Thus, in the adult pancreatic endocrine cells, each specific endocrine cell type produced only one of the four classical hormones. The present investigation demonstrated that the endocrine cells of the fetal, but not the adult, pancreas are able to synthesize all the major islet hormones, and that these peptides are costored in the same granule. The data obtained support the concept of a common precursor stem cell for pancreatic hormone-producing cells.  相似文献   

16.
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.  相似文献   

17.
18.
By indirect immunofluorescence and immunogold electron microscopy with an antibody that recognizes specifically the two forms of native mature rat cathepsin B (31 kDa and 5:25 kDa) but not the proenzyme, we detected cathepsin B not only in lysosomes of adult rat exocrine pancreatic cells but also in the trans Golgi condensing vacuoles, the zymogen granules and the pancreatic juice in the intralobular ducts. In contrast, immunocytochemistry with an antibody specific for rat cathepsin D showed the latter to be present in the same cells only in lysosomal compartments as expected. The same pattern of labeling with these two antibodies was found in the first zymogen granules to form in 17-day-old fetal rat pancreas. Counts of the extent of immunogold labeling of cathepsin B in the adult exocrine cells showed that the concentration of the enzyme was only two-fold higher in the lysosomal compartments than in the zymogen granules. To confirm these observations, rat pancreatic postnuclear supernatant (PNS), a fraction enriched in zymogen granules and rat pancreatic juice obtained by catheterization of the pancreatic duct, were subjected to 2D gel electrophoresis followed by immunoblotting with the cathepsin B antibody. All three samples contained a 31 kDa protein recognized by the antibody with a pI of about 4.5, the single chain mature form of cathepsin B. We then radiolabeled pancreatic PNS and zymogen granule fractions with benzyloxycarbonyl-Tyr[125I]-Ala-CHN2, an affinity label that covalently binds to the active sites of mature forms of both cathepsin B and cathepsin L. In both PNS and zymogen granule fractions this reagent labeled cathepsin B. Immunoprecipitation experiments showed that the antibody to cathepsin B recognized specifically both the single chain and the double chain mature forms of cathepsin B in the native state. Finally, Northern blots with a cDNA of rat cathepsin B showed that the concentration of cathepsin B mRNA in total pancreatic RNA increased following in vivo stimulation of the exocrine pancreatic cells with optimal doses of cerulein, a cholecystokinin analogue. We conclude that significant amounts of mature cathepsin B are secreted from exocrine pancreatic cells via the apical regulated exocytotic pathway, and we discuss this in terms of models for sorting of proteins to the cores of dense cored secretory granules.  相似文献   

19.
The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.  相似文献   

20.
Summary Morphological features of the endocrine cells in the duct system of the pancreas and the biliary tract have been recently characterized in the adult animal with respect to their physiological roles. In the present study, we have investigated their chronological appearance as well as their developmental progress at various stages of the rat fetal and postnatal life. On day 12 of gestation, glucagon and insulin, as well as CCK cells, were identified in the pancreatic primordium. On day 14, glucagon and CCK cells were first detected in the epithelial lining of the common hepatic and the hepatic ducts. These cells remained the dominant endocrine type in the duct system during the fetal period. Insulin and pancreatic polypeptide cells were first observed in the common hepatic duct only on days 16 and 18 of gestation respectively. In spite of their presence in the islets, somatostatin cells were not detected in the duct system during fetal life. They started to appear in the accessory pancreatic duct of the neonate, and subsequently in the common hepatic duct as well as in the small pancreatic ones on day 7 after birth. During postnatal development, the endocrine cells showed progressive or retrogressive changes in different portions of the duct system according to the cell type. In general, somatostatin, CCK and pancreatic polypeptide cells showed an increase, while glucagon and insulin cells gradually dwindled in number up to the adult stage. Somatostatin cells exhibited a significant increase in number, becoming the highest population among the duct endocrine cells in the adult. Throughout the developmental progress, the endocrine cells appear to be allocated in regions relevant to their possible influence modulating the exocrine secretion as well as the drainage of the pancreatic and bile fluid. To whom correspondence should be address.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号