首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for the homology-based modeling of protein three-dimensional structures is proposed and evaluated. The alignment of a query sequence to a structural template produced by threading algorithms usually produces low-resolution molecular models. The proposed method attempts to improve these models. In the first stage, a high-coordination lattice approximation of the query protein fold is built by suitable tracking of the incomplete alignment of the structural template and connection of the alignment gaps. These initial lattice folds are very similar to the structures resulting from standard molecular modeling protocols. Then, a Monte Carlo simulated annealing procedure is used to refine the initial structure. The process is controlled by the model's internal force field and a set of loosely defined restraints that keep the lattice chain in the vicinity of the template conformation. The internal force field consists of several knowledge-based statistical potentials that are enhanced by a proper analysis of multiple sequence alignments. The template restraints are implemented such that the model chain can slide along the template structure or even ignore a substantial fraction of the initial alignment. The resulting lattice models are, in most cases, closer (sometimes much closer) to the target structure than the initial threading-based models. All atom models could easily be built from the lattice chains. The method is illustrated on 12 examples of target/template pairs whose initial threading alignments are of varying quality. Possible applications of the proposed method for use in protein function annotation are briefly discussed.  相似文献   

2.
Peng J  Xu J 《Proteins》2011,79(6):1930-1939
Most threading methods predict the structure of a protein using only a single template. Due to the increasing number of solved structures, a protein without solved structure is very likely to have more than one similar template structures. Therefore, a natural question to ask is if we can improve modeling accuracy using multiple templates. This article describes a new multiple-template threading method to answer this question. At the heart of this multiple-template threading method is a novel probabilistic-consistency algorithm that can accurately align a single protein sequence simultaneously to multiple templates. Experimental results indicate that our multiple-template method can improve pairwise sequence-template alignment accuracy and generate models with better quality than single-template models even if they are built from the best single templates (P-value <10(-6)) while many popular multiple sequence/structure alignment tools fail to do so. The underlying reason is that our probabilistic-consistency algorithm can generate accurate multiple sequence/template alignments. In another word, without an accurate multiple sequence/template alignment, the modeling accuracy cannot be improved by simply using multiple templates to increase alignment coverage. Blindly tested on the CASP9 targets with more than one good template structures, our method outperforms all other CASP9 servers except two (Zhang-Server and QUARK of the same group). Our probabilistic-consistency algorithm can possibly be extended to align multiple protein/RNA sequences and structures.  相似文献   

3.
One of the key components in protein structure prediction by protein threading technique is to choose the best overall template for a given target sequence after all the optimal sequence-template alignments are generated. The chosen template should have the best alignment with the target sequence since the three-dimensional structure of the target sequence is built on the sequence-template alignment. The traditional method for template selection is called Z-score, which uses a statistical test to rank all the sequence-template alignments and then chooses the first-ranked template for the sequence. However, the calculation of Z-score is time-consuming and not suitable for genome-scale structure prediction. Z-scores are also hard to interpret when the threading scoring function is the weighted sum of several energy items of different physical meanings. This paper presents a support vector machine (SVM) regression approach to directly predict the alignment accuracy of a sequence-template alignment, which is used to rank all the templates for a specific target sequence. Experimental results on a large-scale benchmark demonstrate that SVM regression performs much better than the composition-corrected Z-score method. SVM regression also runs much faster than the Z-score method.  相似文献   

4.
Zhang Y  Skolnick J 《Proteins》2004,57(4):702-710
We have developed a new scoring function, the template modeling score (TM-score), to assess the quality of protein structure templates and predicted full-length models by extending the approaches used in Global Distance Test (GDT)1 and MaxSub.2 First, a protein size-dependent scale is exploited to eliminate the inherent protein size dependence of the previous scores and appropriately account for random protein structure pairs. Second, rather than setting specific distance cutoffs and calculating only the fractions with errors below the cutoff, all residue pairs in alignment/modeling are evaluated in the proposed score. For comparison of various scoring functions, we have constructed a large-scale benchmark set of structure templates for 1489 small to medium size proteins using the threading program PROSPECTOR_3 and built the full-length models using MODELLER and TASSER. The TM-score of the initial threading alignments, compared to the GDT and MaxSub scoring functions, shows a much stronger correlation to the quality of the final full-length models. The TM-score is further exploited as an assessment of all 'new fold' targets in the recent CASP5 experiment and shows a close coincidence with the results of human-expert visual assessment. These data suggest that the TM-score is a useful complement to the fully automated assessment of protein structure predictions. The executable program of TM-score is freely downloadable at http://bioinformatics.buffalo.edu/TM-score.  相似文献   

5.
The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Å<RMSD<10 Å, the accuracy suitable for less sensitive structure-alignment methods. Overall, ∼50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes.  相似文献   

6.
Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template‐defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile‐based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa . Proteins 2015; 83:411–427. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Template‐based protein structure modeling is commonly used for protein structure prediction. Based on the observation that multiple template‐based methods often perform better than single template‐based methods, we further explore the use of a variable number of multiple templates for a given target in the latest variant of TASSER, TASSERVMT. We first develop an algorithm that improves the target‐template alignment for a given template. The improved alignment, called the SP3 alternative alignment, is generated by a parametric alignment method coupled with short TASSER refinement on models selected using knowledge‐based scores. The refined top model is then structurally aligned to the template to produce the SP3 alternative alignment. Templates identified using SP3 threading are combined with the SP3 alternative and HHEARCH alignments to provide target alignments to each template. These template models are then grouped into sets containing a variable number of template/alignment combinations. For each set, we run short TASSER simulations to build full‐length models. Then, the models from all sets of templates are pooled, and the top 20–50 models selected using FTCOM ranking method. These models are then subjected to a single longer TASSER refinement run for final prediction. We benchmarked our method by comparison with our previously developed approach, pro‐sp3‐TASSER, on a set with 874 easy and 318 hard targets. The average GDT‐TS score improvements for the first model are 3.5 and 4.3% for easy and hard targets, respectively. When tested on the 112 CASP9 targets, our method improves the average GDT‐TS scores as compared to pro‐sp3‐TASSER by 8.2 and 9.3% for the 80 easy and 32 hard targets, respectively. It also shows slightly better results than the top ranked CASP9 Zhang‐Server, QUARK and HHpredA methods. The program is available for download at http://cssb.biology.gatech.edu/ . © 2011 Wiley Periodicals, Inc.  相似文献   

8.
In a variety of threading methods, often poorly ranked (low z‐score) templates have good alignments. Here, a new method, TASSER_low‐zsc that identifies these low z‐score–ranked templates to improve protein structure prediction accuracy, is described. The approach consists of clustering of threading templates by affinity propagation on the basis of structural similarity (thread_cluster) followed by TASSER modeling, with final models selected by using a TASSER_QA variant. To establish the generality of the approach, templates provided by two threading methods, SP3 and SPARKS2, are examined. The SP3 and SPARKS2 benchmark datasets consist of 351 and 357 medium/hard proteins (those with moderate to poor quality templates and/or alignments) of length ≤250 residues, respectively. For SP3 medium and hard targets, using thread_cluster, the TM‐scores of the best template improve by ~4 and 9% over the original set (without low z‐score templates) respectively; after TASSER modeling/refinement and ranking, the best model improves by ~7 and 9% over the best model generated with the original template set. Moreover, TASSER_low‐zsc generates 22% (43%) more foldable medium (hard) targets. Similar improvements are observed with low‐ranked templates from SPARKS2. The template clustering approach could be applied to other modeling methods that utilize multiple templates to improve structure prediction. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
MOTIVATION: Even the best sequence alignment methods frequently fail to correctly identify the framework regions for which backbones can be copied from the template into the target structure. Since the underprediction and, more significantly, the overprediction of these regions reduces the quality of the final model, it is of prime importance to attain as much as possible of the true structural alignment between target and template. RESULTS: We have developed an algorithm called Consensus that consistently provides a high quality alignment for comparative modeling. The method follows from a benchmark analysis of the 3D models generated by ten alignment techniques for a set of 79 homologous protein structure pairs. For 20-to-40% of the targets, these methods yield models with at least 6 A root mean square deviation (RMSD) from the native structure. We have selected the top five performing methods, and developed a consensus algorithm to generate an improved alignment. By building on the individual strength of each method, a set of criteria was implemented to remove the alignment segments that are likely to correspond to structurally dissimilar regions. The automated algorithm was validated on a different set of 48 protein pairs, resulting in 2.2 A average RMSD for the predicted models, and only four cases in which the RMSD exceeded 3 A. The average length of the alignments was about 75% of that found by standard structural superposition methods. The performance of Consensus was consistent from 2 to 32% target-template sequence identity, and hence it can be used for accurate prediction of framework regions in homology modeling.  相似文献   

10.
Elofsson A 《Proteins》2002,46(3):330-339
One of the most central methods in bioinformatics is the alignment of two protein or DNA sequences. However, so far large-scale benchmarks examining the quality of these alignments are scarce. On the other hand, recently several large-scale studies of the capacity of different methods to identify related sequences has led to new insights about the performance of fold recognition methods. To increase our understanding about fold recognition methods, we present a large-scale benchmark of alignment quality. We compare alignments from several different alignment methods, including sequence alignments, hidden Markov models, PSI-BLAST, CLUSTALW, and threading methods. For most methods, the alignment quality increases significantly at about 20% sequence identity. The difference in alignment quality between different methods is quite small, and the main difference can be seen at the exact positioning of the sharp rise in alignment quality, that is, around 15-20% sequence identity. The alignments are improved by using structural information. In general, the best alignments are obtained by methods that use predicted secondary structure information and sequence profiles obtained from PSI-BLAST. One interesting observation is that for different pairs many different methods create the best alignments. This finding implies that if a method that could select the best alignment method for each pair existed, a significant improvement of the alignment quality could be gained.  相似文献   

11.
Qiu J  Elber R 《Proteins》2006,62(4):881-891
In template-based modeling of protein structures, the generation of the alignment between the target and the template is a critical step that significantly affects the accuracy of the final model. This paper proposes an alignment algorithm SSALN that learns substitution matrices and position-specific gap penalties from a database of structurally aligned protein pairs. In addition to the amino acid sequence information, secondary structure and solvent accessibility information of a position are used to derive substitution scores and position-specific gap penalties. In a test set of CASP5 targets, SSALN outperforms sequence alignment methods such as a Smith-Waterman algorithm with BLOSUM50 and PSI_BLAST. SSALN also generates better alignments than PSI_BLAST in the CASP6 test set. LOOPP server prediction based on an SSALN alignment is ranked the best for target T0280_1 in CASP6. SSALN is also compared with several threading methods and sequence alignment methods on the ProSup benchmark. SSALN has the highest alignment accuracy among the methods compared. On the Fischer's benchmark, SSALN performs better than CLUSTALW and GenTHREADER, and generates more alignments with accuracy >50%, >60% or >70% than FUGUE, but fewer alignments with accuracy >80% than FUGUE. All the supplemental materials can be found at http://www.cs.cornell.edu/ approximately jianq/research.htm.  相似文献   

12.
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.  相似文献   

13.
Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.  相似文献   

14.
Rai BK  Fiser A 《Proteins》2006,63(3):644-661
A major bottleneck in comparative protein structure modeling is the quality of input alignment between the target sequence and the template structure. A number of alignment methods are available, but none of these techniques produce consistently good solutions for all cases. Alignments produced by alternative methods may be superior in certain segments but inferior in others when compared to each other; therefore, an accurate solution often requires an optimal combination of them. To address this problem, we have developed a new approach, Multiple Mapping Method (MMM). The algorithm first identifies the alternatively aligned regions from a set of input alignments. These alternatively aligned segments are scored using a composite scoring function, which determines their fitness within the structural environment of the template. The best scoring regions from a set of alternative segments are combined with the core part of the alignments to produce the final MMM alignment. The algorithm was tested on a dataset of 1400 protein pairs using 11 combinations of two to four alignment methods. In all cases MMM showed statistically significant improvement by reducing alignment errors in the range of 3 to 17%. MMM also compared favorably over two alignment meta-servers. The algorithm is computationally efficient; therefore, it is a suitable tool for genome scale modeling studies.  相似文献   

15.
MOTIVATION: The quality of a model structure derived from a comparative modeling procedure is dictated by the accuracy of the predicted sequence-template alignment. As the sequence-template pairs are increasingly remote in sequence relationship, the prediction of the sequence-template alignments becomes increasingly problematic with sequence alignment methods. Structural information of the template, used in connection with the sequence relationship of the sequence-template pair, could significantly improve the accuracy of the sequence-template alignment. In this paper, we describe a sequence-template alignment method that integrates sequence and structural information to enhance the accuracy of sequence-template alignments for distantly related protein pairs. RESULTS: The structure-dependent sequence alignment (SDSA) procedure was optimized for coverage and accuracy on a training set of 412 protein pairs; the structures for each of the training pairs are similar (RMSD< approximately 4A) but the sequence relationship is undetectable (average pair-wise sequence identity = 8%). The optimized SDSA procedure was then applied to extend PSI-BLAST local alignments by calculating the global alignments under the constraint of the residue pairs in the local alignments. This composite alignment procedure was assessed with a testing set of 1421 protein pairs, of which the pair-wise structures are similar (RMSD< approximately 4A) but the sequences are marginally related at best in each pair (average pair-wise sequence identity = 13%). The assessment showed that the composite alignment procedure predicted more aligned residues pairs with an average of 27% increase in correctly aligned residues over the standard PSI-BLAST alignments for the protein pairs in the testing set.  相似文献   

16.
A major bottleneck in comparative modeling is the alignment quality; this is especially true for proteins whose distant relationships could be reliably recognized only by recent advances in fold recognition. The best algorithms excel in recognizing distant homologs but often produce incorrect alignments for over 50% of protein pairs in large fold-prediction benchmarks. The alignments obtained by sequence-sequence or sequence-structure matching algorithms differ significantly from the structural alignments. To study this problem, we developed a simplified method to explicitly enumerate all possible alignments for a pair of proteins. This allowed us to estimate the number of significantly different alignments for a given scoring method that score better than the structural alignment. Using several examples of distantly related proteins, we show that for standard sequence-sequence alignment methods, the number of significantly different alignments is usually large, often about 10(10) alternatives. This distance decreases when the alignment method is improved, but the number is still too large for the brute force enumeration approach. More effective strategies were needed, so we evaluated and compared two well-known approaches for searching the space of suboptimal alignments. We combined their best features and produced a hybrid method, which yielded alignments that surpassed the original alignments for about 50% of protein pairs with minimal computational effort.  相似文献   

17.
Chen H  Kihara D 《Proteins》2008,71(3):1255-1274
The error in protein tertiary structure prediction is unavoidable, but it is not explicitly shown in most of the current prediction algorithms. Estimated error of a predicted structure is crucial information for experimental biologists to use the prediction model for design and interpretation of experiments. Here, we propose a method to estimate errors in predicted structures based on the stability of the optimal target-template alignment when compared with a set of suboptimal alignments. The stability of the optimal alignment is quantified by an index named the SuboPtimal Alignment Diversity (SPAD). We implemented SPAD in a profile-based threading algorithm and investigated how well SPAD can indicate errors in threading models using a large benchmark dataset of 5232 alignments. SPAD shows a very good correlation not only to alignment shift errors but also structure-level errors, the root mean square deviation (RMSD) of predicted structure models to the native structures (i.e. global errors), and local errors at each residue position. We have further compared SPAD with seven other quality measures, six from sequence alignment-based measures and one atomic statistical potential, discrete optimized protein energy (DOPE), in terms of the correlation coefficient to the global and local structure-level errors. In terms of the correlation to the RMSD of structure models, when a target and a template are in the same SCOP family, the sequence identity showed a best correlation to the RMSD; in the superfamily level, SPAD was the best; and in the fold level, DOPE was best. However, in a head-to-head comparison, SPAD wins over the other measures. Next, SPAD is compared with three other measures of local errors. In this comparison, SPAD was best in all of the family, the superfamily and the fold levels. Using the discovered correlation, we have also predicted the global and local error of our predicted structures of CASP7 targets by the SPAD. Finally, we proposed a sausage representation of predicted tertiary structures which intuitively indicate the predicted structure and the estimated error range of the structure simultaneously.  相似文献   

18.
The accuracy of a homology model based on the structure of a distant relative or other topologically equivalent protein is primarily limited by the quality of the alignment. Here we describe a systematic approach for sequence-to-structure alignment, called ‘K*Sync’, in which alignments are generated by dynamic programming using a scoring function that combines information on many protein features, including a novel measure of how obligate a sequence region is to the protein fold. By systematically varying the weights on the different features that contribute to the alignment score, we generate very large ensembles of diverse alignments, each optimal under a particular constellation of weights. We investigate a variety of approaches to select the best models from the ensemble, including consensus of the alignments, a hydrophobic burial measure, low- and high-resolution energy functions, and combinations of these evaluation methods. The effect on model quality and selection resulting from loop modeling and backbone optimization is also studied. The performance of the method on a benchmark set is reported and shows the approach to be effective at both generating and selecting accurate alignments. The method serves as the foundation of the homology modeling module in the Robetta server.  相似文献   

19.

Background

Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate.

Results

We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software.

Conclusions

SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.  相似文献   

20.
MOTIVATION: The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). RESULTS: The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号