首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tremendous potential of room temperature ionic liquids as an alternative to environmentally harmful ordinary organic solvents is well recognized. Ionic liquids, having no measurable vapor pressure, are an interesting class of tunable and designer solvents, and they have been used extensively in a wide range of applications including enzymatic biotransformation. In fact, ionic liquids can be designed with different cation and anion combinations, which allow the possibility of tailoring reaction solvents with specific desired properties, and these unconventional solvent properties of ionic liquids provide the opportunity to carry out many important biocatalytic reactions that are impossible in traditional solvents. As compared to those observed in conventional organic solvents, the use of enzymes in ionic liquids has presented many advantages such as high conversion rates, high enantioselectivity, better enzyme stability, as well as better recoverability and recyclability. To date, a wide range of pronounced approaches have been taken to further improve the performance of enzymes in ionic liquids. This review presents the recent technological developments in which the advantages of ionic liquids as a medium for enzymes have been gradually realized.  相似文献   

2.
Ionic liquids, also called molten salts, are mixtures of cations and anions that melt below 100°C. Typical ionic liquids are dialkylimidazolium cations with weakly coordinating anions such as (MeOSO3) or (PF6). Advanced ionic liquids such as choline citrate have biodegradable, less expensive, and less toxic anions and cations. Deep eutectic solvents are also included in the advanced ionic liquids. Deep eutectic solvents are mixtures of salts such as choline chloride and uncharged hydrogen bond donors such as urea, oxalic acid, or glycerol. For example, a mixture of choline chloride and urea in 1:2 molar ratio liquefies to form a deep eutectic solvent. Their properties are similar to those of ionic liquids. Water-miscible ionic liquids as cosolvents with water enhance the solubility of substrates or products. Although traditional water-miscible organic solvents also enhance solubility, they often inactivate enzymes, while ionic liquids do not. The enhanced solubility of substrates can increase the rate of reaction and often increases the regioor enantioselectivity. Ionic liquids can also be solvents for non-aqueous reactions. In these cases, they are especially suited to dissolve polar substrates. Polar organic solvent alternatives inactivate enzymes, but ionic liquids do not even when they have similar polarities. Besides their solubility properties, ionic liquids and deep eutectic solvents may be greener than organic solvents because ionic liquids are nonvolatile, and can be made from nontoxic components. This review covers selected examples of enzyme catalyzed reaction in ionic liquids that demonstrate their advantages and unique properties, and point out opportunities for new applications. Most examples involve hydrolases, but oxidoreductases and even whole cell reactions have been reported in ionic liquids.  相似文献   

3.
Biocatalysis in ionic liquids - advantages beyond green technology   总被引:12,自引:0,他引:12  
In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.  相似文献   

4.
Nucleoside chemistry represents an important research area for drug discovery, as many nucleoside analogs are prominent drugs and have been widely applied for cancer and viral chemotherapy. However, the synthesis of modified nucleosides presents a major challenge, which is further aggravated by poor solubility of these compounds in common organic solvents. Most of the currently available methods for nucleoside modification employ toxic high boiling solvents; require long reaction time and tedious workup methods. As such, there is constant effort to develop process chemistry in alternative medium to limit the use of organic solvents that are hazardous to the environment and can be deleterious to human health. One such approach is to use ionic liquids, which are ‘designer materials’ with unique and tunable physico-chemical properties. Studies have shown that methodologies using ionic liquids are highly efficient and convenient for the synthesis of nucleoside analogs, as demonstrated by the preparation of pharmaceutically important anti-viral drugs. This article summarizes recent efforts on nucleoside modification using ionic liquids.  相似文献   

5.
Ionic liquids are now recognized as solvents for use in lipase-catalyzed reactions; however, there still remains a serious drawback in that the rate of reaction in an ionic liquid is slower than that in a conventional organic solvent. To overcome this problem, attempts have been made to evolve phosphonium ionic liquids appropriate for lipase-catalyzed reaction; several types of phosphonium salts have been prepared and their capability evaluated for use as solvent for the lipase-catalyzed reaction. Very rapid lipase PS-catalyzed transesterification of secondary alcohols was obtained when 2-methoxyethyl(tri-n-butyl)phosphonium bis(trifluoromethanesulfonyl)imide ([MEBu3P][NTf2]) was used as solvent, affording the first example of a reaction rate superior to that in diisopropyl ether.  相似文献   

6.
The enzymatic selective acylations of carbohydrates in ionic liquids were explored in both organic solvents and ionic liquids to see any significant differences in terms of reactivity and regioselectivity between two different classes of reaction media. Monoprotected glycosides (methyl-6-O-trityl-glucosides and galactosides) were chosen as the substrates with Candida rugosa lipase as an acylation enzyme. Two organic solvents, THF and chloroform, and two ionic liquids, [BMIM]+PF6 ([BMIM]+ = 1-butyl-3-methylimidazolium) and [MOEMIM]+PF6 ([MOEMIM]+ = 1-methoxyethyl-3-methylimidazolium), were employed as reaction media. The enzymatic reactions were performed in the presence of vinyl acetate at room temperature. It was observed that the reactions in ionic liquids took place more rapidly and more selectively than those in conventional organic solvents.  相似文献   

7.
离子液体的性能及应用   总被引:3,自引:0,他引:3  
离子液体不仅可用作环境友好的“绿色溶剂”,而且在生物合成和有机反应中能表现出特殊的催化、促进效应。在介绍离子液体种类、性质、合成方法的基础上,重点综述离子液体功能化方法、离子液体/超临界CO2体系和其在生物催化反应中应用的最新研究进展。  相似文献   

8.
Salt hydrate pairs were used to control water activity in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. It was shown that salt hydrate pairs behave essentially the same in ionic liquids as they do in organic solvents as long as they do not dissolve. Initial rate-water activity profiles were prepared for the immobilized Candida antarctica lipase catalyzed synthesis of 2-ethylhexyl methacrylate. The ability to use salt hydrate pairs for the control of water activity in ionic liquids should allow for improved comparison of enzyme activity and specificity in ionic liquids and conventional solvents.  相似文献   

9.
Ascorbyl fatty acid esters act both as antioxidants and surfactants. These esters are obtained by acylation of vitamin C using different acyl donors in presence of chemical catalysts or lipases. Lipases have been used for this reaction as they show high regioselectivity and can be used under mild reaction conditions. Insolubility of hydrophilic ascorbic acid in non-polar solvents is the major obstacle during ascorbic acid esters synthesis. Different strategies have been invoked to address this problem viz. use of polar organic solvents, ionic liquids, and solid-phase condensation. Furthermore, to improve the yield of ascorbyl fatty acid esters, reactions were performed by (1) controlling water content in the reaction medium, (2) using vacuum to remove formed volatile side product, and (3) employing activated acyl donors (methyl, ethyl or vinyl esters of fatty acids). This mini-review offers a brief overview on lipase-catalyzed syntheses of vitamin C esters and their biotechnological applications. Also, wherever possible, technical viability, scope, and limitations of different methods are discussed.  相似文献   

10.
Cross-linked tyrosinase aggregates were prepared by precipitating the enzyme with ammonium sulfate and subsequent cross-linking with glutaraldehyde. Both activity and stability of these cross-linked enzyme aggregates (CLEAs) in aqueous solution, organic solvents, and ionic liquids have been investigated. Immobilization effectively improved the stability of the enzyme in aqueous solution against various deactivating conditions such as pH, temperature, denaturants, inhibitors, and organic solvents. The stability of the CLEAs in various organic solvents such as tert-butanol (t(1/2)=326.7h at 40°C) was significantly enhanced relative to that in aqueous solution (t(1/2)=5.5h). The effect of thermodynamic water activity (a(w)) on the CLEA activity in organic media was examined, demonstrating that the enzyme incorporated into CLEAs required an extensive hydration (with an a(w) approaching 1.0) for optimizing its activity. The impact of ionic liquids on the CLEA activity in aqueous solution was also assessed.  相似文献   

11.
Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni-and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][PF6]) and bis[(trifluoromethylsulfonyl) imide] ([BMIM] [Tf2N]) were employed as reaction media for the transesterification ofn-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor, The conversion yield was increased around 10% in a water/[BMIM][Tf2N], bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][Tf2N] system. Partion coefficients of the substrates in the water/[BMIM][Tf2N] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.  相似文献   

12.
Abstract

Candida antarctica lipase catalyzes a number of elementary reactions like alcoholysis, ammoniolysis and aminolysis in poly(ethylene glycol) (PEG) media. Reaction rates were comparable to or better than those observed in conventional organic reaction media and ionic liquids. It is envisaged that PEGs could have added benefits for performing biotransformations with highly polar substrates, which are sparingly soluble in common organic solvents.  相似文献   

13.
Ding J  Armstrong DW 《Chirality》2005,17(5):281-292
Over the last ten years, interest and publications involving ionic liquids have expanded exponentially. Thus far, they have predominantly been used in organic synthesis and separations. However, their use is rapidly expanding into other areas of science and technology. Research involving chiral ionic liquids has been much more limited and only recently has come to the forefront. In this work, we review the synthesis of chiral ionic liquids and their use. Today, this is an area of research that is poised for rapid development and expansion.  相似文献   

14.
Oxidative enzymes possess catalytic activity in systems with ionic liquids   总被引:4,自引:2,他引:2  
Oxidative enzymes, laccase C from Trametes sp. and horseradish and soybean peroxidases, catalyzed oxidation reactions in systems with ionic liquids whose content varied from several volume percent to almost total non-aqueous ionic liquids. Similar to the effects produced by standard organic solvents used in non-aqueous enzymology, catalytic activity of the enzymes was decreased by adding a water-miscible ionic liquid, 4-methyl-N-butylpyridinium tetrafluoroborate, or by suspending the enzyme in a water-immiscible ionic liquid, 1-butyl-3-methylimdizaolium hexafluorophosphate. For the oxidation of anthracene, catalyzed by laccase C and assisted by a number of mediators, addition of 4-methyl-N-butylpyridinium tetrafluoroborate, instead of tert-butanol, increased the yield of the oxidation product several-fold.  相似文献   

15.
Biocatalysis in semi-aqueous and nearly anhydrous conditions   总被引:4,自引:0,他引:4  
In the past few years there have been prolific advances in activating enzymes for nonaqueous biocatalysis. Molecular dynamics simulations complement recent experimental results and offer new insights into the deleterious effects of organic solvents, such as water stripping and active-site penetration. Methods for activating enzymes in semi-aqueous or nonaqueous media include protein engineering, chemical modification, and co-lyophilization with non-buffer salts. Enzyme immobilization on novel polymeric supports and the use of zeolite molecular sieves can also increase solvent tolerance, enhance activity, and improve enantioselectivity. The recent implementation of enzymes in ionic liquids has also led to better long-term stability relative to traditional organic solvents and the simultaneous solubilization of enzymes, cofactors and substrates.  相似文献   

16.
《Process Biochemistry》2010,45(1):25-29
The transesterification of 1-phenyl ethanol has been carried out using lipases from Pseudomonas aeruginosa MTCC 5113, to obtain chirally pure aryl ethanols with good yield and excellent enantioselectivity. The lipase from P. aeruginosa gave good conversion and moderate enantioselectivity (ee) in organic solvents, however, when the catalytic amount of ionic liquids were added in the reaction mixture, excellent enantioselectivity was obtained. Moreover, the change in enantiomer preference was seen in the presence of catalytic amount of ionic liquids. The findings revealed that hydrophobic ionic liquids (two-phase system) were the best solvents and 4-substituted aryl ethanols were the pre-eminent substrates for such type of reactions. The preparative scale (5 g) transesterification of 1-phenylethanol using lipases from P. aeruginosa yielded S-(−)-1-phenyl ethanol with 39% yield and >99% ee in hexane and 46% yield and >99% ee in [BMIm][PF6].  相似文献   

17.
Enzymatic reactions in non-aqueous media have been shown to be effective in carrying out chemical transformation where the reactants are insoluble in water or water is a byproduct limiting conversion. Ionic liquids, liquid organic salts with infinitesimal vapor pressure, are potentially useful alternatives to organic solvents. It is known that the thermodynamic water activity is an important variable affecting the activity of enzymes in non-aqueous solvents. This study investigated the influence of water activity on the esterification of geraniol with acetic acid in ionic liquid [bmim]PF6 catalyzed by immobilized Candida antarctica lipase B. The conversion of geraniol in [bmim]PF6 was significant although the reaction rate was slower than in organic solvents. The profile of initial reaction rate-water activity was determined experimentally, and differed from the data reported for other non-aqueous solvents. A maximum in the initial reaction rate was found at aw = 0.6. The pseudo reaction equilibrium constant, Kx, was measured experimentally for the reaction. The average value of Kx in [bmim]PF6 was 12, 20-fold lower than the value reported for the same system in hexane.  相似文献   

18.
Nucleoside-based antiviral drugs have been synthesized using imidazolium-based ionic liquids as reaction medium. The ionic liquids were proved to be better solvents for all the nucleoside in terms of solubility and reaction medium as compared to conventional molecular solvents.  相似文献   

19.
The chemo-selectivity and the efficiency of the enzymatic acylation of 6-amino-1-hexanol have been studied in organic solvents distinct by their nature and their dissociation power, in solvent-free systems corresponding to free fatty acid or ethyl ester media and in different ionic liquids. In organic solvents and fatty acid ester media, a sequential reaction allowed the major production of the diacylated derivative at the equilibrium state. Conversely, the use of a solvent-free system with free fatty acid orientated the reaction exclusively towards the O-acylation by modifying the ionization state of the amino group and decreased the reaction time to reach the equilibrium state. Ionic liquids as 1-butyl-3-methyl imidazolium cation coupled with anions of low nucleophilicity significantly improved the efficiency of the reaction (substrate conversion and initial rate) and also led to the N,O-diacyl product. The nature of the reaction medium was shown to influence the ionization state of functional groups, then their capacity to react, and finally, the efficiency of the reaction.  相似文献   

20.
Biocatalytic transformations in ionic liquids   总被引:19,自引:0,他引:19  
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号