首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of Candida utilis and Saccharomyces cerevisiae in a medium supplemented with sulfur amino acids led to synthesis and accumulation of S-adenosylmethionine, accompanied by a reduction in the cell yield, an increased sensitivity of the cell wall to snail gut enzymes (Helix pomatia), as judged by spheroplast formation, and by a modification of the chemical composition of both the intact cells and their isolated walls. Walls of supplemented cultures of C. utilis were three times as sensitive to enzymatic digestion as walls from nonsupplemented cultures. In contrast to C. utilis, walls isolated from supplemented cultures of S. cerevisiae were digested slightly more rapidly by the purified snail extract than those from nonsupplemented cultures. Chemical modifications of the cell wall are interpreted to explain the ease with which cells from sulfur amino acid-supplemented cultures are converted to spheroplasts.  相似文献   

2.
Aluminum (Al)-tolerant cell lines (ALT301 and ALT401) of tobacco were isolated in a simple calcium (Ca) solution from ethyl methane sulfonate (EMS)-treated suspension cultured tobacco cells ( Nicotiana tabacum L. cv. Samsun, a cell line SL) at the logarithmic phase of growth. A highly tolerant cell line ALT301 exhibited the accumulation of Al and the deposition of callose to the same extent as the parental SL cells during the exposure to Al. However, the Al-treated ALT301 cells grew much better than the Al-treated SL cells after transfer to Al-free growth medium. Compared to SL cells, ALT301 cells were more tolerant to toxicity of copper and iron, but not to that of lanthanum. These results suggest that ALT301 cells have an internal tolerance mechanism, which makes cells grow normally in spite of Al accumulation and Al-induced lesion represented by the deposition of callose. This tolerance mechanism seems also to be effective against copper and iron toxicity. A slightly tolerant cell line ALT401 also accumulated Al to the same degree as SL cells, but deposited significantly less callose than did SL cells (43% of SL). The growth of ALT401 cells after Al treatment was only slightly better than that of SL cells. Thus, it seems that ALT401 cells have a mechanism to protect cells only from the Al-induced deposition of callose, which is not enough to overcome the Al-induced inhibition of growth. The different phenotypes exhibited by these Al-tolerant cell lines suggest that the deposition of callose is not directly related to the inhibition of growth in Al-treated cells.  相似文献   

3.
The present investigation was undertaken to verify whether mitochondria play a significant role in aluminium (Al) toxicity, using the mitochondria isolated from tobacco cells (Nicotiana tabacum, non-chlorophyllic cell line SL) under Al stress. An inhibition of respiration was observed in terms of state-III, state-IV, succinate-dependent, alternative oxidase (AOX)-pathway capacity and cytochrome (CYT)-pathway capacity, respectively, in the mitochondria isolated from tobacco cells subjected to Al stress for 18 h. In accordance with the respiratory inhibition, the mitochondrial ATP content showed a significant decrease under Al treatment. An enhancement of reactive oxygen species (ROS) production under state-III respiration was observed in the mitochondria isolated from Al-treated cells, which would create an oxidative stress situation. The opening of mitochondrial permeability transition pore (MPTP) was seen more extensively in mitochondria isolated from Al-treated cells than in those isolated from control cells. This was Ca(2+) dependent and well modulated by dithioerythritol (DTE) and Pi, but insensitive to cyclosporine A (CsA). The collapse of inner mitochondrial membrane potential (DeltaPsi(m)) was also observed with a release of cytochrome c from mitochondria. A great decrease in the ATP content was also seen under Al stress. Transmission electron microscopy analysis of Al-treated cells also corroborated our biochemical data with distortion in membrane architecture in mitochondria. TUNEL-positive nuclei in Al-treated cells strongly indicated the occurrence of nuclear fragmentation. From the above study, it was concluded that Al toxicity affects severely the mitochondrial respiratory functions and alters the redox status studied in vitro and also the internal structure, which seems to cause finally cell death in tobacco cells.  相似文献   

4.
The pectin content of the cell walls of maize suspension cells was modified to investigate its role in the expression of aluminium (Al) toxicity. Long‐term adaptation to NaCl or to the cellulose synthesis inhibitor 2,6‐dichlorbenzonitirle (DCB) increased the pectin content by 31 and 86%, respectively. Subculturing salt‐adapted cells for up to 3 weeks without NaCl supply or treatment of cells with pectolyase for up to 15 min reduced pectin contents by up to 46%. Such pre‐cultured cells were incubated for 2 h in presence of Al. There was a close positive correlation between pectin and both total and BaCl2 non‐exchangeable Al contents. Aluminium‐induced callose formation as an indicator of Al injury was closely positively correlated to the loss of cell viability. In NaCl‐adapted and pectolyase‐treated cells, Al‐induced callose formation was reduced when compared with normal cells. However, there was a close positive relationship between pectin contents and relative callose induction (digitonin‐induced callose formation, reflecting the different capabilities of cells to synthesize callose set to 100%) indicating that cells with higher pectin contents are more Al‐sensitive. The results presented support our view that the binding of Al to the cell wall pectin‐matrix represents an important step in the expression of Al toxicity.  相似文献   

5.
The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4+) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al‐binding assay revealed that neither NH4+ nor NO3? altered the Al‐binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4+‐supplied roots displayed lower Al‐binding capacity than those from NO3?‐supplied roots when grown in non‐buffered solutions. Fourier‐transform infrared microspectroscopy analysis revealed that, compared with NO3?‐supplied roots, NH4+‐supplied roots possessed fewer Al‐binding groups (‐OH and COO‐) and lower contents of pectin and hemicellulose. However, when grown in pH‐buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al‐binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4+‐reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4+ uptake rather than direct competition for the cell wall binding sites between Al3+ and NH4+.  相似文献   

6.
Glucuronoxylan (GX), an important component of hemicellulose in the cell wall, appears to affect aluminium (Al) sensitivity in plants. To investigate the role of GX in cell‐wall‐localized xylan, we examined the Arabidopsis thaliana parvus mutant in detail. This mutant lacks α‐D‐glucuronic acid (GlcA) side chains in GX and has greater resistance to Al stress than wild‐type (WT) plants. The parvus mutant accumulated lower levels of Al in its roots and cell walls than WT despite having cell wall pectin content and pectin methylesterase (PME) activity similar to those of WT. Our results suggest that the altered properties of hemicellulose in the mutant contribute to its decreased Al accumulation. Although we observed almost no differences in hemicellulose content between parvus and WT under control conditions, less Al was retained in parvus hemicellulose than in WT. This observation is consistent with the finding that GlcA substitutions in WT GX, but not mutant GX, were increased under Al stress. Taken together, these results suggest that the modulation of GlcA levels in GX affects Al resistance by influencing the Al binding capacity of the root cell wall in Arabidopsis.  相似文献   

7.
Cell suspension cultures of Zeamays L. were adapted to grow under conditions of NaCl stress, which increased the cell‐wall pectin content of these cells by 31% compared with unadapted cells (controls). Both cultures were treated for 5 or 10 min with pectin methylesterase (PME) and afterwards incubated in the presence of Al for 2 h. The different capabilities of the cells to synthesise callose due to pre‐treatment were taken into account by calculating relative Al‐induced callose induction (digitonin=100%). Only in salt‐adapted cells with a degree of methylation of cell‐wall pectin (DM) decreasing from 34% (control) to 13%, did PME treatment enhance total and BaCl2‐non‐exchangeable Al contents and Al sensitivity as indicated by increased callose formation. In a further step, a wider variation in DM was achieved by subculturing the NaCl‐adapted cells for up to 3 weeks without NaCl supply and adapting them to the cellulose‐synthesis inhibitor 2,6‐dichlorbenzonitrile (DCB). This reduced DM to 26%, while short‐term treatment with pectolyase resulted in the lowest DM (12%). After the 2 h Al treatment, there was a close negative relationship between DM and relative callose formation of Al contents, with the exception of pectolyase‐treated cells. In addition, intact plants of Solanumtuberosum L. genotypes were characterised for their Al sensitivity in hydroponics using root elongation, Al‐induced callose formation and Al contents of root tips as parameters. Based on all three parameters, the transgenic potato mutant overexpressing PME proved to be more Al‐sensitive than the wild type, the Al‐resistant and even the Al‐sensitive potato cultivar. Especially in the root tips (1 cm), Al treatment (2 h, 50 μM) increased the activity of PME more in the Al‐sensitive than in the Al‐resistant genotypes. The presented data emphasise the importance of the DM of the pectin matrix and the activity of PME for the expression of Al toxicity and Al resistance.  相似文献   

8.
9.
Cell wall components such as pectin and hemicelluloses have been proposed to be involved in aluminum resistance mechanisms in plants. However, whether hydroxyproline-rich glycoproteins (HRGPs), one of the most abundant proteins of the cell walls, are involved in Al resistance mechanisms remains elusive. In this study, two rice cultivars Xiushui 03 (Al resistant) and Xiushui 128 (Al sensitive) significantly differing in Al resistance were identified. In the absence of Al, no significant difference was observed in contents of glycoproteins and hydroxyproline in cell wall fractions of these two cultivars. At the early stage of Al toxicity, glycoproteins and hydroxyproline were significantly induced in these two cultivars, but levels of their accumulation in cell walls were much higher in cv. Xiushui 03 than in cv. Xiushui 128. At the late stage of Al toxicity, their accumulation in cell walls dramatically decreased in cv. Xiushui 128 and, however, still kept a high level in cv. Xiushui 03. The finding that Al-induced changes of glycoproteins and hydroxyproline were completely consistent indicates that Al-induced glycoproteins are HRGPs. Further observation utilizing transmission electron microscope showed that HRGPs were greatly accumulated in cell walls leading to thickening of cell walls in cv. Xiushui 03, however, HRGPs and cell walls greatly decreased in cv. Xiushui 128. These data suggest that Al-induced HRGP accumulation in cell walls is involved in alleviating Al toxicity in rice.  相似文献   

10.
The ion-exchange properties of cell wall polymers isolated from the roots of wheat (Triticum aestivum L.) plants grown on either nitrate-free (N-deficient) or nitrate-containing (+N) hydroponic nutrient medium have been investigated. Irrespective of the nitrogen nutrition regimen, the studied cell walls contained four types of ion-exchange groups: primary amino groups of structural proteins (pKa < 3), carboxyl groups of polygalacturonic acid in pectin (pK a ~4.7), carboxyl groups of hydroxycinnamic acids (pK a ~7.3), and phenolic OH-groups of lignin (pKa ~10.2). The quantitative ratio between these types of ion-exchange groups, the mass fraction of cell walls in the dry weight of roots, and the swelling coefficient of cell walls depended on the nitrate presence in the growing medium. Compared to the +N variant, the N-deficient variant was characterized by a 2.4 times higher content of phenolic OH-groups in cell walls and 1.24 times higher mass fraction of cell walls; at the same time, the swelling coefficient for this variant was lower by 10%. The obtained data indicate that nitrogen deficiency results in a formation of thicker root cell walls with a higher degree of polymer cross-linking that may be caused by the increased lignin content.  相似文献   

11.
Blamey  F.P.C.  Ostatek-Boczynski  Z.  Kerven  G.L. 《Plant and Soil》1997,192(2):269-275
Although soluble aluminium (Al) has long been recognised as an important limitation to plant growth on acid soils, the biochemical basis of Al toxicity has not been elucidated. Aluminium accumulation in the cell wall may be important, especially the reaction of Al with calcium (Ca) pectate. A study was conducted to investigate the effects of six ligands, citrate, malate, galacturonate, fluoride, sulfate and chloride, on the sorption of Al by Ca pectate prepared from two sources of pectin that differed in degree of methyl esterification (DE). The sorption of Al by Ca pectate increased linearly with increase in Al added from 25 to 100 µM (or 50 to 200 µM in the case of Al2(SO4)3). There was a significant reduction in Al sorption in the presence of those ligands that form strong complexes with Al, especially citrate and, to a lesser extent, malate and fluoride. There was little difference in Al sorption by Ca pectate prepared from pectin of differing DE. Calcium in the supernatant solution increased linearly by 1.5 nmol for each 1 nmol increase in Al sorbed. The results support the hypothesis that strong complexes of Al with organic and inorganic ligands reduce Al sorption by Ca pectate in the cell wall.  相似文献   

12.
It is generally understood that the inhibition of growth of root apices is the initial effect caused by aluminium (Al) toxicity. The correlation between impaired H+-fluxes across the plasma membrane (PM) and Al-induced growth inhibition, Al accumulation and callose formation in root apices of squash (Cucurbita pepo L. cv. Tetsukabuto) is reported here. The root inhibition was dependent on Al concentration, and the duration of exposure, with the damage occurring preferentially in regions with high Al accumulation and callose formation. Using the fluorescent Al indicator (Morin), Al was localized in the cell walls of the root-tip cells after 3 h and in the whole root-tip cells after 6 h of the Al treatment (50 micro M). The inhibition of H+-pumping rate in the highly purified PM vesicles obtained from the Al-treated apical root portions (1 cm) coincided with the inhibition of root growth under Al stress. Furthermore, H+-ATPase activity of PM vesicles prepared from the control root apices was strongly inhibited by Al in vitro in a dose-dependent manner. Approximately 50% inhibition was observed when PM vesicles were preincubated at Al concentration as low as 10 micro M followed by the enzyme assay in the medium without Al. Using the pH indicator (bromocresol purple), it is shown that surface pH of the control (0 Al) root apices was strongly alkalized from the starting pH of 4.5 in a time-dependent manner. By contrast, the surface pH changed only slightly in the Al-treated root apices. The changes in surface pH mediated by altered dynamics of H+ efflux and influx across the root tip PM play an important role in root growth as affected by Al.  相似文献   

13.
Zhang Z  Wang H  Wang X  Bi Y 《Plant cell reports》2011,30(9):1701-1711
Nitric oxide (NO) is a key signal molecule involved in many physiological processes in plants. To study the mechanisms of exogenous NO contribution to alleviate the aluminum (Al) toxicity, roots of rice (Oryza sativa) seedlings pre-treated with sodium nitroprusside (SNP, a NO donor) were used to investigate the effect of Al in this study. Results indicated that NO alleviated the lipid peroxidation induced by Al and promoted the root elongation, whereas butylated hydroxyanisole (BHA), an efficient lipophilic antioxidant, alleviated the lipid peroxidation only. Rice seedling roots pre-treated with SNP followed by Al treatment had lower contents of pectin and hemicellulose, lower Al accumulation in root tips and cell walls, higher degree of methylation of pectin and lower wall Al-binding capacity than the roots with Al treatment only. Therefore, the decreased Al accumulation in the cell walls of rice roots is likely to be the reason for the NO-induced increase of Al tolerance in rice, and it seems that exogenous NO enhanced Al tolerance in rice roots by decreasing the contents of pectin and hemicellulose, increasing the degree of methylation of pectin, and decreasing Al accumulation in root cell walls.  相似文献   

14.
The primary reactions leading to Al toxicity in plant cells have not yet been elucidated. We used soybean (Glycine max [L.] Merr.) cell suspension cultures to address the question whether lipid peroxidation plays an important role in Al toxicity. Upon transfer to an Al-containing culture medium with a calculated Al3+ activity of 15 microM soybean cells showed a distinct and longtime increase in lipid peroxidation within 4 h. At the same time a drastic loss of cell viability was observed. Butylated hydroxyanisole (BHA) and N,N'-diphenyl-p-phenylenediamine (DPPD), two lipophilic antioxidants, were able to almost completely suppress lipid peroxidation in Al-treated cells at a concentration of 20 microM. This effect was dose-dependent for DPPD and was observed at minimum concentrations of 1-2 microM. When lipid peroxidation was suppressed by DPPD or BHA cell viability remained high even in the presence of toxic Al concentrations. These results suggest that Al-induced enhancement of lipid peroxidation is a decisive factor for Al toxicity in suspension cultured soybean cells.  相似文献   

15.
  • Aluminium (Al) is toxic to most plants. Nevertheless, some species accumulate Al without showing toxicity symptoms. Previous studies have evidenced Al in chloroplasts of Al-accumulating species from the Cerrado vegetation in South America. We ask whether Al increases carbon assimilation through enhanced apparent efficiency of Rubisco.
  • Seedlings of the Al-accumulator Qualea grandiflora (Vochysiaceae) were grown in nutrient solution with 0, 740, and 1480 μm Al. Growth parameters, relative leaf water content, Al concentration in organs, gas exchange and apparent carboxylation efficiency (measured from A/Ci curves) were evaluated for 60 days.
  • Plants without Al showed no root growth, necrotic roots, low gas exchange rates, and decreased apparent carboxylation efficiency. Al-treated plants, however, showed new white roots and increased root biomass leading to higher leaf hydration, and apparent carboxylation efficiency was higher in these plants. Increased Al available in the nutrient solution increased Al accumulation in plant organs.
  • Absence of Al compromised root integrity in Q. grandiflora, thus limiting leaf hydration. No positive direct effect of Al on Rubisco was evidenced in Al-treated plants.
  相似文献   

16.
Experiments were carried out to identify the primary site for aluminium (Al) toxicity in roots. Al accumulated in large amounts in the younger and outer cells in roots of pea and was retarded when the ionic strength of the Al solution was high. Cell destruction was extensive in the regions with high Al accumulation. The accumulation of Al in, and potassium (K) leakage from, the root tip were in the order pea>maize>rice, the same order as their sensitivity to Al.The protoplasts from the root tip portion of pea incubated with Al showed a wrinkled and uneven surface. The protoplasts progressively shrank and eventually collapsed. Viability decreased in this process. In the control protoplasts of maize, -glucan formation was uniform on the spherical surfaces, whereas it was spotty in the Al-treated protoplasts; the cell wall material of the latter contained partly 1, 3--glucan which is known to be synthesised by 1, 3--glucan synthase embedded in the plasma membrane. These results suggest that the specific site for Al toxicity is the plasma membrane of younger and outer cells in roots and that Al tolerance depends largely on the integrity of the plasma membrane.  相似文献   

17.

Aims

Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock.

Methods

Plants were grown hydroponically in a nutrient solution supplemented with 5 μM B for 14 days and then transferred to a B-free medium (0 μM B) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined.

Results

After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange.

Conclusions

These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.  相似文献   

18.
Pectin, a normal constituent of cell walls, caused growth rates to accelerate to the rates in living cells when supplied externally to isolated cell walls of Chara corallina. Because this activity was not reported previously, the activity was investigated. Turgor pressure (P) was maintained in isolated walls or living cells using a pressure probe in culture medium. Pectin from various sources was supplied to the medium. Ca and Mg were the dominant inorganic elements in the wall. EGTA or pectin in the culture medium extracted moderate amounts of wall Ca and essentially all the wall Mg, and wall growth accelerated. Removing the external EGTA or pectin and replacing with fresh medium returned growth to the original rate. A high concentration of Ca2+ quenched the accelerating activity of EGTA or pectin and caused gelling of the pectin, physically inhibiting wall growth. Low pH had little effect. After the Mg had been removed, Ca-pectate in the wall bore the longitudinal load imposed by P. Removal of this Ca caused the wall to burst. Live cells and isolated walls reacted similarly. It was concluded that Ca cross-links between neighbouring pectin molecules were strong wall bonds that controlled wall growth rates. The central role of Ca-pectate chemistry was illustrated by removing Ca cross-links with new pectin (wall "loosening"), replacing vacated cross-links with new Ca2+ ("Ca2+-tightening"), or adding new cross-links with new Ca-pectate that gelled ("gel tightening"). These findings establish a molecular model for growth that includes wall deposition and assembly for sustained growth activity.  相似文献   

19.
Although aluminum (AL) toxicity has been widely studied in monocotyledonous crop plants, the mechanism of Al impact on economically important dicotyledonous plants is poorly understood. Here, we report the spatial pattern of Al-induced root growth inhibition, which is closely associated with inhibition of H(+)-ATPase activity coupled with decreased surface negativity of plasma membrane (PM) vesicles isolated from apical 5-mm root segments of squash (Cucurbita pepo L. cv Tetsukabuto) plants. High-sensitivity growth measurements indicated that the central elongation zone, located 2 to 4 mm from the tip, was preferentially inhibited where high Al accumulation was found. The highest positive shifts (depolarization) in zeta potential of the isolated PM vesicles from 0- to 5-mm regions of Al-treated roots were corresponded to pronounced inhibition of H(+)-ATPase activity. The depolarization of PM vesicles isolated from Al-treated roots in response to added Al in vitro was less than that of control roots, suggesting, particularly in the first 5-mm root apex, a tight Al binding to PM target sites or irreversible alteration of PM properties upon Al treatment to intact plants. In line with these data, immunolocalization of H(+)-ATPase revealed decreases in tissue-specific H(+)-ATPase in the epidermal and cortex cells (2--3 mm from tip) following Al treatments. Our report provides the first circumstantial evidence for a zone-specific depolarization of PM surface potential coupled with inhibition of H(+)-ATPase activity. These effects may indicate a direct Al interaction with H(+)-ATPase from the cytoplasmic side of the PM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号