首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Y Snitko  S K Han  B I Lee  W Cho 《Biochemistry》1999,38(24):7803-7810
To identify the residues essential for interfacial binding and substrate binding of human pancreatic phospholipase A2 (hpPLA2), several ionic residues in the putative interfacial binding surface (R6E, K7E, K10E, and K116E) and substrate binding site (D53K and K56E) were mutated. Interfacial affinity of these mutants was measured using anionic polymerized liposomes, and their enzymatic activity was measured using various substrates including phospholipid monomers, zwitterionic and anionic micelles, and anionic polymerized mixed liposomes. Similar mutations (R6E, K10E, K56E, and K116E) were made to porcine pancreatic phospholipase A2 (ppPLA2), and the properties of mutants were measured by the same methods. Results indicate that hpPLA2 and ppPLA2 have similar interfacial binding mechanisms in which cationic residues in the amino terminus and Lys-116 in the carboxy terminus are involved in binding to anionic lipid surfaces. Small but definite differences between the two enzymes were observed in overall interfacial affinity and activity and the effects of the mutations on interfacial enzyme activity. The interfacial binding of hpPLA2 and ppPLA2 is distinct from that of bovine pancreatic phospholipase A2 in that Lys-56 is involved in the interfacial binding of the latter enzyme. The unique phospholipid headgroup specificity of hpPLA2 derives from the presence of Asp-53 in the substrate binding site. This residue appears to participate in stabilizing electrostatic interactions with the cationic ethanolamine headgroup, hence the phosphatidylethanolamine preference of hpPLA2. Taken together, these studies reveal the similarities and the differences in the mechanisms by which mammalian pancreatic phospholipases A2 interact with lipid aggregates and perform interfacial catalysis.  相似文献   

2.
Yu BZ  Poi MJ  Ramagopal UA  Jain R  Ramakumar S  Berg OG  Tsai MD  Sekar K  Jain MK 《Biochemistry》2000,39(40):12312-12323
Pancreatic phospholipase A(2) (PLA2) shows a strong preference for the binding to the anionic interface and a consequent allosteric activation. In this paper, we show that virtually all the preference is mediated through 3 (Lys-53, -56, and -120) of the 12 cationic residues of bovine pancreatic PLA2. The lysine-to-methionine substitution enhances the binding of the enzyme to the zwitterionic interface, and for the K53,56,120M triple mutant at the zwitterionic interface is comparable to that for the wild type (WT) at the anionic interface. In the isomorphous crystal structure, the backbone folding of K53,56M K120,121A and WT are virtually identical, yet a significant change in the side chains of certain residues, away from the site of substitution, mostly at the putative contact site with the interface (i-face), is discernible. Such reciprocity, also supported by the spectroscopic results for the free and bound forms of the enzyme, is expected because a distal structural change that perturbs the interfacial binding could also affect the i-face. The results show that lysine-to-methionine substitution induces a structural change that promotes the binding of PLA2 to the interface as well as the substrate binding to the enzyme at the interface. The kinetic results are consistent with a model in which the interfacial Michaelis complex exists in two forms, and the complex that undergoes the chemical step is formed by the charge compensation of Lys-53 and -56. Analysis of the incremental changes in the kinetic parameters shows that the charge compensation of Lys-53 and -56 contributes to the activation and that of Lys-120 contributes only to the structural change that promotes the stability of the Michaelis complex at the interface. The charge compensation effects on these three residues also account for the differences in the anionic interface preference of the evolutionarily divergent secreted PLA2.  相似文献   

3.
Yu BZ  Janssen MJ  Verheij HM  Jain MK 《Biochemistry》2000,39(19):5702-5711
A well-defined region of pancreatic and other secreted phospholipase A2 (PLA2), which we call the i-face, makes a molecular contact with the interface to facilitate and control the events and processivity of the interfacial catalytic turnover cycles. The structural features of the i-face and its allosteric relationship to the active site remain to be identified. As a part of the calcium binding (26-34) loop, Leu-31 is located on the surface near the substrate binding slot of PLA2. Analysis of the primary rate and equilibrium parameters of the Leu-31 substitution mutants of the pig pancreatic PLA2 shows that the only significant effect of the substitution is to impair the chemical step at the zwitterionic interface in the presence of added NaCl, and only a modest effect is seen on kcat at the anionic interface. Leu-31 substitutions have little effect on the binding of the enzyme to the interface; the affinity for certain substrate mimics is modestly influenced in W3F, L31W double mutant. The fluorescence emission results with the double mutant show that the microenvironment of Trp-31 is qualitatively different at the zwitterionic versus anionic interfaces. At both of the interfaces Trp-31 is not shielded from the bulk aqueous environment as it remains readily accessible to acrylamide and water. The NaCl-induced change in the Trp-31 emission spectrum of the double mutant on the zwitterionic interface is similar to that seen on the binding to the anionic interface. Together, the kinetic and spectroscopic results show that the form of PLA2 at the zwitterionic interface (Ez) is distinguishably different from the catalytically more efficient form at the anionic interface (Ea). This finding provides a structural basis for the two-state model for kcat activation by the anionic interface. In conjunction with earlier results we suggest that neutralization of certain cationic residues of PLA2 exerts a control on the calcium loop through residue 31.  相似文献   

4.
Porcine pancreatic phospholipase A2 (PLA2) was modified by single and multiple site-directed mutations at sites thought to be involved in interfacial binding. Charged and polar residues in the C-terminal region were replaced by aromatic residues on the basis of an analogy with snake venom PLA2s, which display high affinity for a zwitterionic interface. The PLA2 variants constructed were N117W, N117W/D119Y and K116Y/N117W/D119Y. Titration with micelles of a zwitterionic substrate suggests that the variants N117W and K116Y/N117W/D119Y possess improved ability to bind to the micellar substrate interface, relative to the wild-type enzyme. Improved interfacial binding was confirmed by direct binding studies with micelles of a zwitterionic substrate analogue, indicating up to five times higher affinity for both variants. Interfacial binding is not improved for the variant N117W/D119Y. Maximal enzyme velocities (Vapp./max) with the zwitterionic substrate were between 25 and 75% of that of the wild-type enzyme. However, competitive inhibition and direct binding studies with a strong inhibitor revealed that the affinity for substrate present at the interface (Km*) is perturbed by the mutations made. For the variant N117W, the slight decrease observed in Vapp./max is most likely made up of a 24-fold reduction in catalytic turnover (kcat) and 18-fold improved substrate binding (Km*).  相似文献   

5.
Mono- and biphasic kinetic effects of bile salts on the pancreatic IB phospholipase A2 (PLA2) catalyzed interfacial hydrolysis are characterized. This novel phenomenon is modeled as allosteric action of bile salts with PLA2 at the interface. The results and controls also show that these kinetic effects are not due to surface dilution or solubilization or disruption of the bilayer interface where in the mixed-micelles substrate replenishment becomes the rate-limiting step. The PLA2-catalyzed rate of hydrolysis of zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles depends on the concentration and structure of the bile salt. The sigmoidal rate increase with cholate saturates at 0.06 mole fraction and changes little at the higher mole fractions. Also, with the rate-lowering bile salts (B), such as taurochenodeoxycholate (TCDOC), the initial sigmoidal rate increase at lower mole fraction is followed by nearly complete reversal to the rate at the pre-activation level at higher mole fractions. The rate-lowering effect of TCDOC is not observed with the (62-66)-loop deleted DeltaPLA2, or with the Naja venom PLA2 that is evolutionarily devoid of the loop. The rate increase is modeled with the assumption that the binding of PLA2 to DMPC interface is cooperatively promoted by bile salt followed by allosteric k(cat)(*)-activation of the bound enzyme by the anionic interface. The rate-lowering effect of bile salts is attributed to the formation of a specific catalytically inert E(*)B complex in the interface, which is noticeably different than the 1:1 EB complex in the aqueous phase. The cholate-activated rate of hydrolysis is lowered by hypolidemic ezetimibe and guggul extract which are not interfacial competitive inhibitors of PLA2. We propose that the biphasic modulation of the pancreatic PLA2 activity by bile salts regulates gastrointestinal fat metabolism and cholesterol homeostasis.  相似文献   

6.
Yu BZ  Rogers J  Tsai MD  Pidgeon C  Jain MK 《Biochemistry》1999,38(15):4875-4884
Primary rate and equilibrium parameters for 60 site-directed mutants of bovine pancreatic phospholipase A2 (PLA2) are analyzed so incremental contributions of the substitution of specific residues can be evaluated. The magnitude of the change is evaluated so a functional role in the context of the N- and C-domains of PLA2 can be assigned, and their relationship to the catalytic residues and to the i-face that makes contact with the interface. The effect of substitutions and interfacial charge is characterized by the equilibrium dissociation constant for dissociation of the bound enzyme from the interface (Kd), the dissociation constant for dissociation of a substrate mimic from the active site of the bound enzyme (KL), and the interfacial Michaelis constants, KM and kcat. Activity is lost (>99.9%) on the substitution of H48 and D49, the catalytic residues. A more than 95% decrease in kcat is seen with the substitution of F5, I9, D99, A102, or F106, which form the substrate binding pocket. Certain residues, which are not part of the catalytic site or the substrate binding pocket, also modulate kcat. Interfacial anionic charge lowers Kd, and induces kcat activation through K56, K53, K119, or K120. Significant changes in KL are seen by the substitution of N6, I9, F22, Y52, K53, N71, Y73, A102, or A103. Changes in KM [=(k2+k-1)/k1] are attributed to kcat (=k2) and KL (=k-1/k1). Some substitutions change more than one parameter, implying an allosteric effect of the binding to the interface on KS, and the effect of the interfacial anionic charge on kcat. Interpreted in the context of the overall structure, results provide insights into the role of segments and domains in the microscopic events of catalytic turnover and processivity, and their allosteric regulation. We suggest that the interfacial recognition region (i-face) of PLA2, due to the plasticity of certain segments and domains, exercises an allosteric control on the substrate binding and chemical step.  相似文献   

7.
F Ghomashchi  B Z Yu  O Berg  M K Jain  M H Gelb 《Biochemistry》1991,30(29):7318-7329
The binding equilibrium of phospholipase A2 (PLA2) to the substrate interface influences many aspects of the overall kinetics of interfacial catalysis by this enzyme. For example, the interpretation of kinetic data on substrate specificity was difficult when there was a significant kinetic contribution from the interfacial binding step to the steady-state catalytic turnover. This problem was commonly encountered with vesicles of zwitterionic phospholipids, where the binding of PLA2 to the interface was relatively poor. The action of PLA2 on phosphatidylcholine (PC) vesicles containing a small amount of anionic phospholipid, such as phosphatidic acid (PA), was studied. It was shown that the hydrolysis of these mixed lipid vesicles occurs in the scooting mode in which the enzyme remains tightly bound to the interface and only the substrate molecules present on the outer monolayer of the target vesicle became hydrolyzed Thus the phenomenon of scooting mode hydrolysis was not restricted to the action of PLA2 on vesicles of pure anionic phospholipids, but it was also observed with vesicles of zwitterionic lipids as long as a critical amount of anionic compound was present. Under such conditions, the initial rate of hydrolysis of PC in the mixed PC/PA vesicles was enhanced more than 50-fold. Binding studies of PLA2 to vesicles and kinetic studies in the scooting mode demonstrated that the enhancement of PC hydrolysis in the PC/PA covesicles was due to the much higher affinity of the enzyme toward covesicles compared to vesicles of pure PC phospholipids. A novel and technically simple protocol for accurate determination of the substrate specificity of PLA2 at the interface was also developed by using a double-radiolabel approach. Here, the action of PLA2 in the scooting mode was studied on vesicles of the anionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphomethanol that contained small amounts of 3H- and 14C-labeled phospholipids. From an analysis of the 3H and 14C radioactivity in the released fatty acid products, the ratio of substrate specificity constants (kcat/KMS) was obtained for any pair of radiolabeled substrates. These studies showed that the PLA2s from pig pancreas and Naja naja naja venom did not discriminate between phosphatidylcholine and phosphatidylethanolamine phospholipids or between phospholipids with saturated versus unsaturated acyl chains and that the pig enzyme had a slight preference for anionic phospholipids (2-3-fold). The described protocol provided an accurate measure of the substrate specificity of PLA2 without complications arising from the differences in binding affinities of the enzyme to vesicles composed of pure phospholipids.  相似文献   

8.
We report the structures of the crystallographic dimer of porcine pancreatic IB phospholipase A(2) (PLA2) with either five sulfate or phosphate anions bound. In each structure, one molecule of a tetrahedral mimic MJ33 [1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol] and the five anions are shared between the two subunits of the dimer. The sn-2-phosphate of MJ33 is bound in the active site of one subunit (A), and the alkyl chain extends into the active site slot of the second subunit (B) across the subunit-subunit interface. The two subunits are packed together with a large hydrophobic and desolvated surface buried between them along with the five anions that define a plane. The anions bind by direct contact with two cationic residues (R6 and K10) per subunit and through closer-range H-bonding interactions with other polarizable ligands. These features of the "dimer" suggest that the binding of PLA2 to the anionic groups at the anionic interface may be dominated by coordination through H-bonding with only a partial charge compensation needed. Remarkably, the plane defined by the contact surface is similar to the i-face of the enzyme [Ramirez, F., and Jain, M. K. (1991) Proteins: Struct., Funct., Genet. 9, 229-239], which has been proposed to make contact with the substrate interface for the interfacial catalytic turnover. Additionally, these structures not only offer a view of the active PLA2 complexed to an anionic interface but also provide insight into the environment of the tetrahedral intermediate in the rate-limiting chemical step of the turnover cycle. Taken together, our results offer an atomic-resolution structural view of the i-face interactions of the active form of PLA2 associated to an anionic interface.  相似文献   

9.
Stahelin RV  Cho W 《Biochemistry》2001,40(15):4672-4678
The roles of cationic, aliphatic, and aromatic residues in the membrane association and dissociation of five phospholipases A(2) (PLA(2)), including Asp-49 PLA(2) from the venom of Agkistrodon piscivorus piscivorus, acidic PLA(2) from the venom of Naja naja atra, human group IIa and V PLA(2)s, and the C2 domain of cytosolic PLA(2), were determined by surface plasmon resonance analysis. Cationic interfacial binding residues of A. p. piscivorus PLA(2) (Lys-10) and human group IIa PLA(2) (Arg-7, Lys-10, and Lys-16), which mediate electrostatic interactions with anionic membranes, primarily accelerate the membrane association. In contrast, an aliphatic side chain of the C2 domain of cytosolic PLA(2) (Val-97), which penetrates into the hydrophobic core of the membrane and forms hydrophobic interactions, mainly slows the dissociation of membrane-bound protein. Aromatic residues of human group V PLA(2) (Trp-31) and N. n. atra PLA(2) (Trp-61, Phe-64, and Tyr-110) contribute to both membrane association and dissociation steps, and the relative contribution to these processes depends on the chemical nature and the orientation of the side chains as well as their location on the interfacial binding surface. On the basis of these results, a general model is proposed for the interfacial binding of peripheral proteins, in which electrostatic interactions by ionic and aromatic residues initially bring the protein to the membrane surface and the subsequent membrane penetration and hydrophobic interactions by aliphatic and aromatic residues stabilize the membrane-protein complexes, thereby elongating the membrane residence time of protein.  相似文献   

10.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

11.
Mono- and biphasic kinetic effects of bile salts on the pancreatic IB phospholipase A2 (PLA2) catalyzed interfacial hydrolysis are characterized. This novel phenomenon is modeled as allosteric action of bile salts with PLA2 at the interface. The results and controls also show that these kinetic effects are not due to surface dilution or solubilization or disruption of the bilayer interface where in the mixed-micelles substrate replenishment becomes the rate-limiting step. The PLA2-catalyzed rate of hydrolysis of zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles depends on the concentration and structure of the bile salt. The sigmoidal rate increase with cholate saturates at 0.06 mole fraction and changes little at the higher mole fractions. Also, with the rate-lowering bile salts (B), such as taurochenodeoxycholate (TCDOC), the initial sigmoidal rate increase at lower mole fraction is followed by nearly complete reversal to the rate at the pre-activation level at higher mole fractions. The rate-lowering effect of TCDOC is not observed with the (62-66)-loop deleted ΔPLA2, or with the Naja venom PLA2 that is evolutionarily devoid of the loop. The rate increase is modeled with the assumption that the binding of PLA2 to DMPC interface is cooperatively promoted by bile salt followed by allosteric kcat?-activation of the bound enzyme by the anionic interface. The rate-lowering effect of bile salts is attributed to the formation of a specific catalytically inert E?B complex in the interface, which is noticeably different than the 1:1 EB complex in the aqueous phase. The cholate-activated rate of hydrolysis is lowered by hypolidemic ezetimibe and guggul extract which are not interfacial competitive inhibitors of PLA2. We propose that the biphasic modulation of the pancreatic PLA2 activity by bile salts regulates gastrointestinal fat metabolism and cholesterol homeostasis.  相似文献   

12.
Site-directed mutagenesis was used to probe the structural and functional roles of two highly conserved residues, Tyr-52 and Tyr-73, in interfacial catalysis by bovine pancreatic phospholipase A2 (PLA2, overproduced in Escherichia coli). According to crystal structures, the side chains of these two active site residues form H-bonds with the carboxylate of the catalytic residue Asp-99. Replacement of either or both Tyr residues by Phe resulted in only very small changes in catalytic rates, which suggests that the hydrogen bonds are not essential for catalysis by PLA2. Substitution of either Tyr residue by nonaromatic amino acids resulted in substantial decreases in the apparent kcat toward 1,2-dioctanoyl-sn-glycero-3-phosphocholine (DC8PC) micelles and the v(o) (turnover number at maximal substrate concentration, i.e., mole fraction = 1) toward 1,2-dimyristoyl-sn-glycero-3-phosphomethanol (DC14PM) vesicles in scooting mode kinetics [Berg, O. G., Yu, B.-Z., Rogers, J., & Jain, M. K. (1991) Biochemistry 30, 7283-7297]. The Y52V mutant was further analyzed in detail by scooting mode kinetics: the E to E* equilibrium was examined by fluorescence; the dissociation constants of E*S, E*P, and E*I (KS*, KP*, and KI*, respectively) in the presence of Ca2+ were measured by protection of histidine-48 modification and by difference UV spectroscopy; the Michaelis constant KM* was calculated from initial rates of hydrolysis in the absence and presence of competitive inhibitors; and the turnover number under saturating conditions (kcat, which is a theoretical value since the enzyme may not be saturated at the interface) was calculated from the vo and KM* values. The results indicated little perturbation in the interfacial binding step (E to E*) but ca. 10-fold increases in KS*, KP*, KI*, and KM* and a less than 10-fold decrease in kcat. Such changes in the function of Y52V are not due to global conformational changes since the proton NMR properties of Y52V closely resemble those of wild-type PLA2; instead, it is likely to be caused by perturbed enzyme-substrate interactions at the active site. Tyr-73 appears to play an important structural role. The conformational stability of all Tyr-73 mutants decreased by 4-5 kcal/mol relative to that of the wild-type PLA2. The proton NMR properties of Y73A suggested significant conformational changes and substantially increased conformational flexibility. These detailed structural and functional analyses represent a major advancement in the structure-function study of an enzyme involved in interfacial catalysis.  相似文献   

13.
M K Jain  J Rogers  O Berg  M H Gelb 《Biochemistry》1991,30(29):7340-7348
Polymyxin B (Px), a cyclic cationic peptide, was shown to act as a potent activator of interfacial catalysis by phospholipase A2 (PLA2) acting on dimyristoylphosphatidylmethanol vesicles in the scooting mode. A 7-fold increase in the initial enzymatic velocity was seen with the pig pancreatic PLA2 in the presence of 1 microM Px. Initial experiments including the dependency of the degree of activation by Px on the source of the PLA2 suggested that Px bound to a cationic binding site on the enzyme. However, numerous additional observations led to the conclusion that activation by Px was due to its effects on the substrate interface. For example, the activation by Px was only seen when the PLA2 acted on small vesicles rather than larger ones, and all of the available substrate was eventually hydrolyzed in the presence of a small mole fraction of Px. Px did not promote the intervesicle exchange of PLA2, and it did not alter the binding of the evidence led to the conclusion that Px activated interfacial catalysis by promoting the replenishment of substrate in the enzyme-containing vesicles. When PLA2 was acting on small vesicles in the scooting mode, the observed initial velocity was lower than that measured with large vesicles because the surface concentration of substrate decreased relatively rapidly in the small vesicles. Px promoted the transfer of phospholipids between the vesicles and functioned as an activator by keeping the mole fraction of substrate in the enzyme-containing vesicles close to 1. This effect of Px was consistent with the ability of polycationic peptides to induce the intervesicle mixing of anionic phospholipids in vesicles [Bondeson, J., & Sundler, R. (1990) Biochim. Biophys. Act 1026, 186-194]. Activation by substrate replenishment was quantitatively predicted by the theory of interfacial catalysis on vesicles in the scooting mode. The role of substrate replenishment in the kinetics of interfacial catalysis in phospholipid micelles was discussed. Finally, the protocols developed in this paper were outlined in view of their utility in the analysis of activators of interfacial catalysis.  相似文献   

14.
Berg OG  Yu BZ  Chang C  Koehler KA  Jain MK 《Biochemistry》2004,43(25):7999-8013
Equilibrium parameters for the binding of monodisperse alkyl sulfate along the i-face (the interface binding surface) of pig pancreatic IB phospholipase A(2) (PLA2) to form the premicellar complexes (E(i)(#)) are characterized to discern the short-range specific interactions. Typically, E(i)(#) complexes are reversible on dilution. The triphasic binding isotherm, monitored as the fluorescence emission from the single tryptophan of PLA2, is interpreted as a cooperative equilibrium for the sequential formation of three premicellar complexes (E(i)(#), i = 1, 2, 3). In the presence of calcium, the dissociation constant K(1) for the E(1)(#) complex of PLA2 with decyl sulfate (CMC = 4500 microM) is 70 microM with a Hill coefficient n(1) = 2.1 +/- 0.2; K(2) for E(2)(#) is 750 microM with n(2) = 8 +/- 1, and K(3) for E(3)(#) is 4000 microM with an n(3) value of about 12. Controls show that (a) self-aggregation of decyl sulfate alone is not significant below the CMC; (b) occupancy of the active site is not necessary for the formation of E(i)(#); (c) K(i) and n(i) do not change significantly due to the absence of calcium, possibly because alkyl sulfate does not bind to the active site of PLA2; (d) the E(i)(#) complexes show a significant propensity for aggregation; and (e) PLA2 is not denatured in E(i)(#). The results are interpreted to elaborate the model for atomic level interactions along the i-face: The chain length dependence of the fit parameters suggests that short-range specific anion binding of the headgroup is accompanied by desolvation of the i-face of E(i)(#). We suggest that allosteric activation of PLA2 results from such specific interactions of the amphiplies and the desolvation of the i-face. The significance of these primary interfacial binding events and the coexistence of the E and E(i)(#) aggregates is discussed.  相似文献   

15.
Ray S  Scott JL  Tatulian SA 《Biochemistry》2007,46(45):13089-13100
Phospholipase A2 (PLA2) enzymes act at the membrane-water interface to access their phospholipid substrate from the membrane. They are regulated by diverse factors, including the membrane charge, fluidity, mode of membrane binding (insertion, orientation), and allosteric conformational effects. Relative contributions of these factors to the complex kinetics of PLA2 activation are not well understood. Here we examine the effects of thermal phase transitions and the surface charge of phospholipid membranes on the activation of human pancreatic PLA2. The temperature dependence of the initial catalytic rate of PLA2 peaks around the lipid phase transition temperature (Tm) when Tm is not too far from physiological temperatures (30-40 degrees C), and the peak is higher in the presence of anionic membranes. High PLA2 activity can be induced by thermal perturbations of the membrane. Temperature-dependent fluorescence quenching experiments show that despite dramatic effects of the lipid phase transition on PLA2 activity, the membrane insertion depth of PLA2 increases only modestly above Tm. The data show that membrane structural disorder, and not the depth of membrane insertion, plays a major role in PLA2 activity.  相似文献   

16.
In addition to the Ca2+ ion at the active site, porcine pancreatic phospholipase A2 (PLA) is known to bind a second calcium ion with a lower affinity at alkaline pH. The second calcium-binding site has been held responsible for effective interaction of phospholipase with organized lipid/water interfaces [van Dam-Mieras, M. C. E., Slotboom, A. J., Pieterson, W. A. and de Haas, G. H. (1975) Biochemistry 14, 5387-5394]. To study the identity of the acidic amino acid residues involved in liganding the second calcium ion in detail, we used site-directed mutagenesis to specifically alter the cDNA encoding porcine pancreatic phospholipase. Three mutant phospholipase species were constructed, each of which lacked one of the potentially important carboxylates: Asp66----Asn, Glu71----Asn and Glu92----Gln. The Gln92 mutant PLA displayed the same properties as native phospholipase indicating that Glu92 is not important for binding the second metal ion. However, Glu71 and, to a lesser extent, Asp66 are both directly involved in the low-affinity calcium binding.  相似文献   

17.
Phospholipase A(2) (PLA(2)) binds to membranes and catalyzes phospholipid hydrolysis, thus initiating the biosynthesis of lipid-derived mediators of inflammation. A snake-venom PLA(2) was completely inhibited by covalent modification of the catalytic histidine 48 by p-bromophenacyl bromide. Moreover, His(48) modification affected PLA(2) structure, its membrane-binding affinity, and the effects of PLA(2) on the membrane structure. The native PLA(2) increased the order parameter of fluid membranes, whereas the opposite effect was observed for gel-state membranes. The data suggest membrane dehydration by PLA(2) and the formation of PLA(2)-membrane hydrogen bonding. The inhibited PLA(2) had lower membrane-binding affinity and exerted weaker effects on membrane hydration and on the lipid-order parameter. Although membrane binding resulted in formation of more flexible alpha-helices in the native PLA(2), which corresponds to faster amide hydrogen exchange, the modified enzyme was more resistant to hydrogen exchange and experienced little structural change upon membrane binding. The data suggest that 1), modification of a catalytic residue of PLA(2) induces conformational changes that propagate to the membrane-binding surface through an allosteric mechanism; 2), the native PLA(2) acquires more dynamic properties during interfacial activation via membrane binding; and 3), the global conformation of the inhibited PLA(2), including the alpha-helices, is less stable and is not influenced by membrane binding. These findings provide further evidence for an allosteric coupling between the membrane-binding (regulatory) site and the catalytic center of PLA(2), which contributes to the interfacial activation of the enzyme.  相似文献   

18.
Bai S  Jain MK  Berg OG 《Biochemistry》2008,47(9):2899-2907
Pig pancreatic IB phospholipase A 2 (PLA2) forms three distinguishable premicellar E i (#) ( i = 1, 2, and 3) complexes at successively higher decylsulfate concentrations. The Hill coefficient for E 1 (#) is n 1 = 1.6, and n 2 and n 3 for E 2 (#) and E 3 (#) are about 8 each. Saturation-transfer difference nuclear magnetic resonance (NMR) and other complementary results with PLA2 show that decylsulfate molecules in E 2 (#) and E 3 (#) are contiguously and cooperatively clustered on the interface-binding surface or i-face that makes contact with the substrate interface. In these complexes, the saturation-transfer difference NMR signatures of (1)H in decylsulfate are different. The decylsulfate epitope for the successive E i (#) complexes increasingly resembles the micellar complex formed by the binding of PLA2 to preformed micelles. Contiguous cooperative amphiphile binding is predominantly driven by the hydrophobic effect with a modest electrostatic shielding of the sulfate head group in contact with PLA2. The formation of the complexes is also associated with structural change in the enzyme. Calcium affinity of E 2 (#) appears to be modestly lower than that of the free enzyme and E 1 (#). Binding of decylsulfate to the i-face does not require the catalytic calcium required for the substrate binding to the active site and for the chemical step. These results show that E i (#) complexes are useful to structurally characterize the cooperative sequential and contiguous binding of amphiphiles on the i-face. We suggest that the allosteric changes associated with the formation of discrete E i (#) complexes are surrogates for the catalytic and allosteric states of the interface activated PLA2.  相似文献   

19.
Site-directed mutagenesis studies of bovine pancreatic phospholipase A2 (PLA2, overproduced in Escherichia coli) showed that replacement of surface residue Lys-56 by a neutral or hydrophobic amino acid residue resulted in an unexpected and significant change in the function of the enzyme. The kcat for phosphatidylcholine micelles increases 3-4-fold for K56M, K56I, and K56F and ca. 2-fold for K56N and K56T but does not change for K56R. These results suggest that the side chain of residue 56 has significant influence on the activity of PLA2. In order to probe the structural basis for the enhanced activity, the crystal structures of wild-type and K56M PLA2 were determined by X-ray crystallography to a resolution of 1.8 A. The results suggest that the mutation has not only perturbed the conformation of the side chain of Met-56 locally but also caused conformational changes in the neighboring loop (residues 60-70), resulting in the formation of a hydrophobic pocket by residues Met-56, Tyr-52, and Tyr-69. Docking of a phosphatidylcholine inhibitor analogue into the active site of K56M, according to the structure of the complex of cobra venom PLA2-phosphatidylethanolamine inhibitor analogue [White, S.P., Scott, D. L., Otwinowski, Z., Gleb, M. H., & Sigler, P. (1990) Science 250, 1560-1563], showed that the choline moiety [N(CH3)3]+ is readily accommodated into the newly formed hydrophobic pocket with a high degree of surface complementarity. This suggests a possible interaction between residue 56 and the head group of the phospholipid, explaining the enhanced activities observed when the positively charged Lys-56 is substituted by apolar residues, viz., K56M, K56I, and K56F. Further support for this interpretation comes from the 5-fold enhancement in kcat for the mutant K56E with a negatively charged side chain, where there would be an attractive electrostatic interaction between the side chain of Glu-56 and the positively charged choline moiety. Our results also refute a recent report [Tomasselli, A. G., Hui, J., Fisher, J., Zürcher-Neely, H., Reardon, I.M., Oriaku, E., Kézdy, F.J., & Heinrikson, R.L. (1989) J. Biol. Chem. 264, 10041-10047] that substrate-level acylation of Lys-56 is an obligatory step in the catalysis by PLA2.  相似文献   

20.
Antibody 26-10, obtained in a secondary immune response, binds digoxin with high affinity (K(a) = 1.3 x 10(10) M(-1)) because of extensive shape complementarity. We demonstrated previously that mutations of the hapten contact residue HTrp-100 to Arg (where H refers to the heavy chain) resulted in increased specificity for digoxin analogs substituted at the cardenolide 16 position. However, mutagenesis of H:CDR1 did not result in such a specificity change despite the proximity of the H:CDR1 hapten contact residue Asn-35 to the cardenolide 16 position. Here we constructed a bacteriophage-displayed library containing randomized mutations at H chain residues 30-35 in a 26-10 mutant containing Arg-100 (26-10-RRALD). Phage were selected by panning against digoxin, gitoxin (16-OH), and 16-acetylgitoxin coupled to bovine serum albumin. Clones that retained wild-type Asn at position 35 showed preferred binding to gitoxin, like the 26-10-RRALD parent. In contrast, clones containing Val-35 selected mainly on digoxin-bovine serum albumin demonstrated a shift back to wild-type specificity. Several clones containing Val-35 bound digoxin with increased affinity, approaching that of the wild type in a few instances, in contrast to the mutation Val-35 in the wild-type 26-10 background, which reduces affinity for digoxin 90-fold. It has therefore proven possible to reorder the 26-10 binding site by mutations including two major contact residues on opposite sides of the site and yet to retain high affinity for binding for digoxin. Thus, even among antibodies that have undergone affinity maturation in vivo, different structural solutions to high affinity binding may be revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号