首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pig platelet tropomyosin exhibits many of the functional activities of skeletal tropomyosin. At low ionic strength it forms end-to-end aggregates similar to those formed by skeletal tropomyosins. It forms a 1:1 complex with muscle troponin or with a troponin I-pig brain calmodulin complex, as well as a 1:6 association with platelet filamentous actin. Electron microscopy of paracrystals shows that the troponin binding site is slightly C-terminal of the unique cysteine, corresponding to position 190 of the rabbit skeletal alpha-tropomyosin sequence. The effect of a complex comprising platelet actin and tropomyosin on the ATPase activity of rabbit skeletal muscle myosin subfragment-1 was similar to that displayed by its skeletal muscle counterpart. Platelet tropomyosin decreased the activity by roughly half in a calcium-independent manner. Addition of troponin to the actin-tropomyosin in the absence of calcium results in further inhibition and allows the full activity of the complex to be restored by Ca2+. These results differ from those obtained by C?té & Smillie for horse platelet tropomyosin and this may reflect the different isomeric nature of pig platelet tropomyosin. These results suggest that the functional properties of non-muscle tropomyosins may differ when comparisons are made between proteins isolated from the same type of cell but in different species. Differences in self-association and actin-binding properties may be finely graded between different isoforms.  相似文献   

2.
Molecular polarity in tropomyosin-troponin T co-crystals.   总被引:1,自引:0,他引:1       下载免费PDF全文
New features of the structure and interactions of troponin T and tropomyosin have been revealed by electron microscopy of so-called double-diamond co-crystals. These co-crystals were formed using rabbit alpha2 tropomyosin complexed with troponin T from either skeletal or cardiac muscle, which have different lengths in the amino-terminal region, as well as a bacterially expressed skeletal muscle troponin T fragment of 190 residues that lacks the amino-terminal region. Differences in the images of the co-crystals have allowed us to establish the polarities of both the troponin T subunit and tropomyosin in the projected lattice. Moreover, in agreement with their sequences, the amino-terminal region of a bovine cardiac muscle troponin T isoform appears to be longer than that from the rabbit skeletal muscle troponin T isoform and to span more of the amino terminus of tropomyosin at the head-to-tail filament joints. Images of crystals tilted relative to the electron beam also reveal the supercoiling of the tropomyosin filaments in this lattice. Based on these results, a three-dimensional model of the double-diamond lattice has been constructed.  相似文献   

3.
To monitor binding of tropomyosin to yeast actin, we mutated S235 to C and labeled the actin with pyrene maleimide at both C235 and the normally reactive C374. Saturating cardiac tropomyosin (cTM) caused about a 20% increase in pyrene fluorescence of the doubly labeled F-actin but no change in WT actin C374 probe fluorescence. Skeletal muscle tropomyosin caused only a 7% fluorescence increase, suggesting differential binding modes for the two tropomyosins. The increased cTM-induced fluorescence was proportional to the extent of tropomyosin binding. Yeast tropomyosin (TPM1) produced less increase in fluorescence than did cTM, whereas that caused by yeast TPM2 was greater than either TPM1 or cTM. Cardiac troponin largely reversed the cTM-induced fluorescence increase, and subsequent addition of calcium resulted in a small fluorescence recovery. An A230Y mutation, which causes a Ca(+2)-dependent hypercontractile response of regulated thin filaments, did not change probe235 fluorescence of actin alone or with tropomyosin +/- troponin. However, addition of calcium resulted in twice the fluorescence recovery observed with WT actin. Our results demonstrate isoform-specific binding of different tropomyosins to actin and suggest allosteric regulation of the tropomyosin/actin interaction across the actin interdomain cleft.  相似文献   

4.
A cDNA expression library of approximately 80,000 members was prepared from rat embryonic fibroblast mRNA using the plasmid expression vectors pUC8 and pUC9. Using an immunological screening procedure and 32P-labeled cDNA probes, clones encoding rat embryonic fibroblast tropomyosin 1 (TM-1) were identified and isolated. DNA sequence analysis was carried out to determine the amino acid sequence of the protein. Rat embryonic fibroblast TM-1 was found to contain 284 amino acids and is most homologous to smooth muscle alpha-tropomyosin compared with skeletal muscle alpha- and beta-tropomyosins and platelet beta-tropomyosin. Among the various tropomyosins, two regions where the greatest sequence divergence is evident are between amino acids 185 and 216 and amino acids 258 and 284. Rat embryonic fibroblast TM-1 and chicken smooth muscle alpha-tropomyosin are most closely related from amino acids 185 and 216 compared with skeletal muscle and platelet tropomyosins. In contrast, rat embryonic fibroblast TM-1, smooth muscle alpha-tropomyosin, and platelet tropomyosin are most homologous from amino acids 258 and 284 compared with skeletal muscle tropomyosins. These differences in sequences at the carboxyl-terminal region of the various tropomyosins are discussed in relation to differences in their binding to skeletal muscle troponin and its T1 fragment.  相似文献   

5.
1. Tropomyosins were extracted from vertebrate and invertebrate muscles, and their immunolo;ical characteristics were compared using antisera against tropomyosins from chicken skeletal and cardiac muscles. 2. Antigenic sites common to those of chicken skeletal muscle tropomyosin were found in all the tropomyosins tested, although the reactions of these common antigenic sites in an immunodiffusion test were weak in tropomyosins from phylogenetically distant animals. 3. An immunological difference was found between alpha-tropomyosins from chicken cardiac muscle and rabbit cardiac muscle. Thus they had specific antigenic sites in addition to the common ones. 4. A component was found in a 1 M KCL extract of Tetrahymena pyriformis which reacted with antiserum against chicken skeletal muscle tropomyosin.  相似文献   

6.
A new procedure was developed to purify tropomyosin. The procedure was an adaptation of that described for purification of myosin. By eliminating troponin before precipitating with (NH4)2 SO4, it was possible to obtain pure tropomyosin from the same preparation from which myosin was purified. When tropomyosin was subjected to isoelectrofocusing two tropomyosins were present, having similar isoelectric points of pH 5.4 and 5.6; two tropomyosin subunits were resolved in the presence of 6 M urea. The two subunits had very similar isoelectric points, pH 4.7 and 5.0. According to Ouchterlony analyses the tropomyosins from canine skeletal and cardiac tissue were immunologically identical when incubated with goat gammaG antitropomyosin (cardiac).  相似文献   

7.
Myelin basic protein (MBP) binds to both skeletal muscle and brain tropomyosin resulting in the formation of paracrystalline tactoids in the absence of divalent cations and at neutral pH. Both types of tropomyosin reduce the inhibition of the ATPase activity of actomyosin caused by MBP. On the other hand, MBP alters the effect of both brain and skeletal muscle tropomyosins on the actomyosin ATPase, even though MBP and tropomyosin bind independently to actin. We conclude that MBP cannot substitute for troponin I in the regulation of the action of tropomyosin on actin.  相似文献   

8.
A new procedure was developed to purify tropomyosin. The procedure was an adaptation of that described for purification of myosin. By eliminating troponin before precipitating with (NH4), SO4 it was possible to obtain pure tropomyosin from the same preparation from which myosin was purified. When tropomyosin was subjected to isoelectrofocusing two tropomyosins were present, having similar isoelectric points of pH 5, 4 and 5.6; two tropomyosin subunits were resolved in the presence of 6 M urea. The two subunits had very similar isoelectric points, pH 4.7 and 5.0. According to Ouchterlony analyses the tropomyosins from canine skeletal and cardiac tissue were immunologically identical when incubated with goat γG antitropomyosin (cardiac).  相似文献   

9.
The two major proteins in the I-bands of skeletal muscle, actin and tropomyosin, were each labeled with fluorescent dyes and microinjected into cultured cardiac myocytes and skeletal muscle myotubes. Actin was incorporated along the entire length of the I-band in both types of muscle cells. In the myotubes, the incorporation was uniform, whereas in cardiac myocytes twice as much actin was incorporated in the Z-bands as in any other area of the I-band. Labeled tropomyosin that had been prepared from skeletal or smooth muscle was incorporated in a doublet in the I-band with an absence of incorporation in the Z-band. Tropomyosin prepared from brain was incorporated in a similar pattern in the I-bands of cardiac myocytes but was not incorporated in myotubes. These results in living muscle cells contrast with the patterns obtained when labeled actin and tropomyosin are added to isolated myofibrils. Labeled tropomyosins do not bind to any region of the isolated myofibrils, and labeled actin binds to A-bands. Thus, only living skeletal and cardiac muscle cells incorporate exogenous actin and tropomyosin in patterns expected from their known myofibrillar localization. These experiments demonstrate that in contrast to the isolated myofibrils, myofibrils in living cells are dynamic structures that are able to exchange actin and tropomyosin molecules for corresponding labeled molecules. The known overlap of actin filaments in cardiac Z-bands but not in skeletal muscle Z-bands accounts for the different patterns of actin incorporation in these cells. The ability of cardiac myocytes and non-muscle cells but not skeletal myotubes to incorporate brain tropomyosin may reflect differences in the relative actin-binding affinities of non-muscle tropomyosin and the respective native tropomyosins. The implications of these results for myofibrillogenesis are presented.  相似文献   

10.
Tropomyosin binds end to end along the actin filament. Tropomyosin ends, and the complex they form, are required for actin binding, cooperative regulation of actin filaments by myosin, and binding to the regulatory protein, troponin T. The aim of the work was to understand the isoform and structural specificity of the end-to-end association of tropomyosin. The ability of N-terminal and C-terminal model peptides with sequences of alternate alpha-tropomyosin isoforms, and a troponin T fragment that binds to the tropomyosin overlap, to form complexes was analyzed using circular dichroism spectroscopy. Analysis of N-terminal extensions (N-acetylation, Gly, AlaSer) showed that to form an overlap complex between the N-terminus and the C-terminus requires that the N-terminus be able to form a coiled coil. Formation of a ternary complex with the troponin T fragment, however, effectively takes place only when the overlap complex sequences are those found in striated muscle tropomyosins. Striated muscle tropomyosins with N-terminal modifications formed ternary complexes with troponin T that varied in affinity in the order: N-acetylated > Gly > AlaSer > unacetylated. The circular dichroism results were corroborated by native gel electrophoresis, and the ability of the troponin T fragment to promote binding of full-length tropomyosins to filamentous actin.  相似文献   

11.
Interaction of myosin with actin in striated muscle is controlled by Ca2+ via thin filament associated proteins: troponin and tropomyosin. In cardiac muscle there is a whole pattern of myosin and tropomyosin isoforms. The aim of the current work is to study regulatory effect of tropomyosin on sliding velocity of actin filaments in the in vitro motility assay over cardiac isomyosins. It was found that tropomyosins of different content of α- and β-chains being added to actin filament effects the sliding velocity of filaments in different ways. On the other hand the velocity of filaments with the same tropomyosins depends on both heavy and light chains isoforms of cardiac myosin.  相似文献   

12.
In cardiac and skeletal muscles tropomyosin binds to the actin outer domain in the absence of Ca(2+), and in this position tropomyosin inhibits muscle contraction by interfering sterically with myosin-actin binding. The globular domain of troponin is believed to produce this B-state of the thin filament (Lehman, W., Hatch, V., Korman, V. L., Rosol, M., Thomas, L. T., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S., and Craig, R. (2000) J. Mol. Biol. 302, 593-606) via troponin I-actin interactions that constrain the tropomyosin. The present study shows that the B-state can be promoted independently by the elongated tail region of troponin (the NH(2) terminus (TnT-(1-153)) of cardiac troponin T). In the absence of the troponin globular domain, TnT-(1-153) markedly inhibited both myosin S1-actin-tropomyosin MgATPase activity and (at low S1 concentrations) myosin S1-ADP binding to the thin filament. Similarly, TnT-(1-153) increased the concentration of heavy meromyosin required to support in vitro sliding of thin filaments. Electron microscopy and three-dimensional reconstruction of thin filaments containing TnT-(1-153) and either cardiac or skeletal muscle tropomyosin showed that tropomyosin was in the B-state in the complete absence of troponin I. All of these results indicate that portions of the troponin tail domain, and not only troponin I, contribute to the positioning of tropomyosin on the actin outer domain, thereby inhibiting muscle contraction in the absence of Ca(2+).  相似文献   

13.
1. On electrophoresis in dissociating conditions the tropomyosins isolated from skeletal muscles of mammalian, avian and amphibian species migrated as two components. These were comparable with the alpha and beta subunits of tropomyosin present in rabbit skeletal muscle. 2. The alpha and beta components of all skeletal-muscle tropomyosins contained 1 and 2 residues of cysteine per 34000g respectively. 3. The ratio of the amounts of alpha and beta subunit present in skeletal muscle tropomyosins was characteristic for the muscle type. Muscle consisting of slow red fibres contained a greater proportion of beta-tropomyosin than muscles consisting predominantly of white fast fibres. 4. Mammalian and avian cardiac muscle tropomyosins consisted of alpha-tropomyosin only. 5. Mammalian and avian smooth-muscle tropomyosins differed both chemically and immunologically from striated-muscle tropomyosins. 6. Antibody raised against rabbit skeletal alpha-tropomyosin was species non-specific, reacting with all other striated muscle alpha-tropomyosin subunits tested. 7. Antibody raised against rabbit skeletal beta-tropomyosin subunit was species-specific.  相似文献   

14.
We have expressed two variants of chicken striated muscle alpha-tropomyosin in Escherichia coli: fusion tropomyosin containing 80 amino acids of a non-structural influenza virus protein (NS1) on the amino terminus and a non-fusion tropomyosin which is a variant because the amino-terminal methionine is not acetylated (unacetylated tropomyosin). From our analysis of purified proteins in vitro we suggest that the amino-terminal region, which is highly conserved in muscle tropomyosins, is crucial for all aspects of tropomyosin function. Both forms are altered in tropomyosin activity: neither shows head-to-tail polymerization, with or without troponin. Unacetylated tropomyosin binds weakly to actin, but in the presence of troponin it binds well and can regulate the actomyosin ATPase. Fusion tropomyosin binds well to actin, but binding of troponin is calcium-sensitive and it does not confer effective calcium sensitivity on the actomyosin ATPase. Our results indicate that the local charge at the amino terminus is critical for actin binding but that normal head-to-tail association is not required. The properties of fusion tropomyosin-troponin interaction are indicative of impaired troponin T binding to tropomyosin and provide evidence for its binding to the amino terminus of tropomyosin.  相似文献   

15.
Tropomyosins from bovine aorta and pulmonary artery exhibit identical electrophoretic patterns in sodium dodecyl sulfate but differ from tropomyosins of either chicken gizzard or rabbit skeletal muscle. Each of the four tropomyosins binds readily to skeletal muscle F-actin as indicated by their sedimentation with actin and by their ability to maximally stimulate or inhibit actin-activated ATPase activity at a molar ratio of one tropomyosin per seven actin monomers. Smooth and skeletal muscle tropomyosins differ in their effects on activity of skeletal myosin or heavy meromyosin (HMM); the former can enhance activity under conditions in which the latter inhibits. Gizzard and arterial tropomyosins are usually equally effective in stimulating ATPase activity of skeletal acto-HMM, but at high concentrations of Mg2+ gizzard tropomyosin is more effective, a result that cannot be attributed to differences in the binding of the two tropomyosins to F-actin. The effects of tropomyosin also depend on the type of myosin; tropomyosin enhances activity of gizzard myosin under conditions in which it inhibits that of skeletal myosin. Increasing the pH or the Mg2+ concentration can reverse the effect of tropomyosin on actin-stimulated ATPase activity of skeletal HMM from activation to inhibition, but this reversal is not found with gizzard myosin. Activity in the absence of tropomyosin is independent of pH, and the loss of activation with increasing pH is not accompanied by loss of binding of tropomyosin to actin.  相似文献   

16.
Comparison of two types of Ca2+-regulated thin filament, reconstructed in ghost fibers by incorporating either caldesmon-gizzard tropomyosin-calmodulin or skeletal muscle troponin-tropomyosin complex, was performed by polarized microphotometry. The changes in actin structure under the influence of these regulatory complexes, as well as those upon the binding of the myosin heads, were followed by measurements of F-actin intrinsic tryptophan fluorescence and the fluorescence of phalloidin-rhodamine complex attached to F-actin. The results show that in the presence of smooth muscle tropomyosin and calmodulin, caldesmon causes Ca2+-dependent alterations of actin conformation and flexibility similar to those induced by skeletal muscle troponin-tropomyosin complex. In both cases, transferring of the fiber from '-Ca2+' to '+Ca2+' solution increases the number of turned-on actin monomers. However, whereas troponin in the absence of Ca2+ potentiates the effect of skeletal muscle tropomyosin, caldesmon-calmodulin complex inhibits the effect of smooth muscle tropomyosin. This difference seems to be due to the qualitatively different alterations in the structure and flexibility of F-actin in ghost fibers evoked by smooth and skeletal muscle tropomyosins. Troponin can bind to F-actin-smooth muscle tropomyosin-caldesmon complex and, in the presence of Ca2+, release the restraint by caldesmon for S-1-induced alterations of conformation, and reduce that for flexibility of actin in ghost fibers. This effect seems to be related to the abolishment by troponin of the potentiating effect of tropomyosin on caldesmon-induced inhibition of actomyosin ATPase activity.  相似文献   

17.
Tropomyosin shares immunologic epitopes with group A streptococcal M proteins   总被引:14,自引:0,他引:14  
Tropomyosin is an alpha-helical coiled-coil protein with structural similarities to the streptococcal M protein. In order to show serologic cross-reactivity between streptococcal M proteins and tropomyosin, we selected from a panel of murine mAb those which reacted with M proteins and tropomyosins in the ELISA. Western blots were used to study the reactions of each mAb with human and rabbit cardiac and rabbit skeletal tropomyosins. The antibodies were further characterized for their reactions with the additional autoantigens myosin, actin, keratin, and DNA. Five mAb were found which reacted with either PepM5 or ColiM6 protein and tropomyosin in Western blots or ELISA. Two of the tropomyosin positive mAb were also antinuclear antibodies and were inhibited with DNA. In Western blots of cardiac tropomyosins, the mAb reacted with either the 70-kDa dimer of tropomyosin, the 35-kDa monomer, or both. Some differences were observed in the reactions of the mAb with the different tropomyosins in Western blots. The heart cross-reactive epitopes shared between M proteins and tropomyosin were in most instances shared with cardiac myosin. Differences were observed among the reactions of the mAb with the different tropomyosins. This report constitutes the first evidence of serologic cross-reactivity between streptococcal M proteins and tropomyosins.  相似文献   

18.
Chicken gizzard beta-tropomyosin has the same chain length (284 residues) as other muscle tropomyosins, and is most closely related to the beta component of rabbit skeletal muscle. The majority of the amino acid substitutions are restricted to two regions of the structure, residues 185-216 and 258-284. The altered sequences at the COOH-terminal ends (residue 258-284) of the two gizzard components are very similar to each other and to those in platelet tropomyosin and can be correlated with the reduced affinity of interaction of all three tropomyosins with skeletal troponin T and its T1 fragment. The virtually identical NH2-terminal sequences of all four muscle tropomyosin chains indicates that the gizzard proteins' greater ability to polymerize head-to-tail is due to the sequence changes at its COOH terminus. On the other hand, the weaker head-to-tail aggregation of the platelet protein must be due to its NH2-terminal sequence alterations. Examination of the distribution of amino acids and the frequency of their substitution in the a to g positions of the repeating pseudoheptapeptide for all five tropomyosin sequences (four muscle and one platelet) emphasizes the importance of Glu residues at position e. Examination of those features of the muscle sequences implicated in the stabilization of their coiled-coil structures and in their interactions with F-actin suggest only marginal differences among them, with the possible exception of the chicken gizzard gamma component.  相似文献   

19.
Troponin of asynchronous flight muscle   总被引:11,自引:0,他引:11  
Troponin has been prepared from the asynchronous flight muscle of Lethocerus (water bug) taking special care to prevent proteolysis. The regulatory complex contained tropomyosin and troponin components. The troponin components were Tn-C (18,000 Mr), Tn-T (apparent Mr 53,000) and a heavy component, Tn-H (apparent Mr 80,000). The troponin was tightly bound to tropomyosin and could not be dissociated from it in non-denaturing conditions. A complex of Tn-T, Tn-H and tropomyosin inhibited actomyosin ATPase activity and the inhibition was relieved by Tn-C from vertebrate striated muscle in the presence of Ca2+. However, unlike vertebrate Tn-I, Tn-H by itself was not inhibitory. Monoclonal antibodies were obtained to Tn-T and Tn-H. Antibody to Tn-T was used to screen an expression library of Drosophila cDNA cloned in lambda phage. The sequence of cDNA coding for the protein was determined and hence the amino acid sequence. The Drosophila protein has a sequence similar to that of vertebrate skeletal and cardiac Tn-T. The sequence extends beyond the carboxyl end of the vertebrate sequences, and the last 40 residues are acidic. Part of the sequence of Drosophila Tn-T is homologous to the carboxyl end of the Drosophila myosin light chain MLC-2 and one anti-Tn-T antibody cross-reacted with the light chain. Lethocerus Tn-H is related to the large tropomyosins of Drosophila flight muscle, for which the amino acid sequence is known, since antibodies that recognize this component also recognize the large tropomyosins. Tn-H is easily digested by calpain, suggesting that part of the molecule has an extended configuration. Electron micrographs of negatively stained specimens showed that Lethocerus thin filaments have projections at about 39 nm intervals, which are not seen on thin filaments from vertebrate striated muscle and are probably due to the relatively large troponin complex. Decoration of the thin filaments with myosin subfragment-1 in rigor conditions appeared not to be affected by the troponin. The troponin of asynchronous flight muscle lacks the Tn-I component of vertebrate striated muscle. Tn-H occurs only in the flight muscle and may be involved in the activation of this muscle by stretch.  相似文献   

20.
I K Chandy  J C Lo  R D Ludescher 《Biochemistry》1999,38(29):9286-9294
Polarized phosphorescence from the triplet probe erythrosin-5-iodoacetamide attached to sulfhydryls in rabbit skeletal and cardiac muscle tropomyosin (Tm) was used to measure the microsecond rotational dynamics of these tropomyosins in a complex with F-actin. The steady-state phosphorescence anisotropy of skeletal tropomyosin on F-actin was 0.025 +/- 0.005 at 20 degrees C; the comparable anisotropy for cardiac tropomyosin was 0.010 +/- 0. 003. Measurements of the anisotropy as a function of temperature and solution viscosity (modulated by addition of glycerol) indicated that both skeletal and cardiac tropomyosin undergo complex rotational motions on the surface of F-actin. Models assuming either long axis rotation of a rigid rod or torsional twisting of a flexible rod adequately fit these data; both analyses indicated that cardiac Tm is more mobile than skeletal Tm and that the increased mobility on the surface of F-actin reflected either the rotational motion of a smaller physical unit or the torsional twisting of a less rigid molecule. The binding of myosin heads (S1) to the Tm-F-actin complexes increased the anisotropy to 0.049 +/- 0.004 for skeletal and 0.054 +/- 0.007 for cardiac tropomyosin. The titration of the skeletal tropomyosin-F-actin complex by S1 showed a break at an S1/actin ratio of 0.14; this complex had an anisotropy of 0.040 +/- 0.007, suggesting that one bound head effectively restricted the motion of each skeletal tropomyosin. A similar titration with cardiac tropomyosin reached a plateau at an S1/actin ratio of 0.4, suggesting that 2-3 myosin heads are required to immobilize cardiac Tm. Surface mobility is predicted by structural models of the interaction of tropomyosin with the actin filament while the decrease in tropomyosin mobility upon S1 binding is consistent with current theories for the proposed role of myosin binding in the mechanism of tropomyosin-based regulation of muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号