首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two dimeric lithocholic acid-binding proteins previously identified as ligandin (YaYa) and glutathione S-transferase B (YaYc) were isolated from rat liver cytosol. These proteins have molecular weights of 44000 and 47000 respectively. The recovery of these two proteins from liver was not affected by the addition of the proteinase inhibitor Trasylol. No spontaneous interconversion between these two proteins was observed on storage. YaYa and YaYc proteins yielded peptides of identical molecular weight after limited digestion with Staphylococcus aureus V8 proteinase. Analytical and preparative tryptic-digest peptide 'maps' showed that all the soluble peptides obtained from YaYa protein were also recovered from YaYc protein. Approximately six extra soluble peptides, which were not recovered from YaYa protein, were obtained from the tryptic digest of YaYc protein. Subdigests of the insoluble tryptic-digest 'cores' also resulted in the recovery of identical peptides from both proteins. Evidence is presented that the Ya subunit possessed by both proteins is identical; glutathione S transferase B is a hybrid of ligandin and glutathione S-transferase AA. The Ya monomer is responsible for lithocholate binding.  相似文献   

2.
Identity of ligandin in rat testis and liver.   总被引:2,自引:2,他引:0       下载免费PDF全文
1. One of the main problems in the field of multifunctional proteins such as ligandin is the possibility that multiple forms and isoproteins may exist. Because liver ligandin [GSH (reduced glutathione) S-transferase B] consists of equal amounts of Ya (22 000 Da) and Yc (25 000 Da) subunits, and testis ligandin, prepared by the standard technique of anion-exchange and molecular-exclusion chromatography, contains more Yc subunit than Ya, it has been claimed that testis and liver ligandin are different entities. 2. We purified testis ligandin by immunoaffinity chromatography and have obtained a product identical with liver ligandin (Yc = Ya). This suggests that the differences previously described may be due to contamination of testis ligandin by a closely related species. In fact sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of testis GSH S-transferases separated by CM-cellulose chromatography showed that GSH S-transferase AA, present in large amounts, migrated in the same region as Yc subunit. 3. Testis ligandin prepared by the standard technique was similar to that reported [Bhargava, Ohmi, Listowsky & Arias (1980) J. Biol. Chem. 255, 724-727] and contained more Yc subunit than Ya. CM-cellulose chromatography of this 'pure' preparation revealed significant amounts of GSH S-transferase AA migrating as Yc subunit, in addition to ligandin consisting of equal amounts of Ya and Yc subunits. 4. Our studies show that testis ligandin is identical with liver ligandin. Previously described differences are due to a contaminant identified as GSH S-transferase AA.  相似文献   

3.
The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase YaYc and the YaYa homodimer were purified from rat liver cytosol. An enol ester derivative of bilirubin (bilirubin-Woodward's reagent K) was prepared and used to label covalently the nonsubstrate ligand-binding site on these two proteins. There was a linear relationship between the amount of bilirubin-Woodward's reagent K added to the reaction mixture and the amount of labeling achieved up to a ratio of 2:1 (bilirubin-Woodward's reagent K: protein-YaYc). A maximum of 0.87 mol of label bound per mol of transferase YaYc. At higher molar ratios, the label appeared to also be binding at a second site on the enzyme. The label blocked the nonsubstrate ligand-binding site of the two transferases but not the catalytic site. The divalent reagent was shown to label equally the Ya and Yc subunits of transferase YaYc, suggesting that the single high affinity bilirubin-binding site present on this protein is formed by an interaction between the subunits rather than residing on a specific subunit. At low ratios of label to protein, bilirubin-Woodward's reagent K appears to label specifically the nonsubstrate ligand-binding site of two forms of glutathione S-transferase, and use of this label should allow for the localization of the nonsubstrate ligand-binding site in the primary amino acid sequence of the Ya and Yc subunits.  相似文献   

4.
Purified ligandin (Y-protein) a 46000-dalton protein, has been shown to consist of two subunit species (mol. wts. 22 000 and 24 000) on discontinuous polyacrylamide gel electrophoresis in sodium dodecyl sulphate. This technique was used to define further the nature of these subunits. The Y sulphobromophthalein-binding fraction of rat hepatic cytosol was shown to contain three major subunit bands designated subunit Ya, subunit Yb and subunit Yc in ascending order of size. Purified ligandin was found to comprise Ya and Yc subunit species, and also gave two bands on isoelectric focusing. The two subunit species in purified ligandin were partially separated by an additional purification step. Antiserum to ligandin reacted mono-specifically with the purified protein, as well as hepatic, renal and small intestinal mucosa cytosol, but gave lines of identity and partial identity with cytosol from testis, ovary and adrenal gland. The Y fraction of testis was found to contain only Yb and Yc species, while all three major bands were found in liver, kidney and small intestinal mucosa. Phenobarbital treatment increased the concentration of Ya and Yb in the liver, but had little effect on Yc. These findings suggest that the Ya and Yc ligandin subunits are the monomers of two proteins: YaYa and YcYc.  相似文献   

5.
The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase B (YaYc) and two other transferases that are homodimers of the individual Ya and Yc subunits were purified from rat liver. Inhibition of these three enzymes by Indocyanine Green, biliverdin and several bile acids was investigated at different values of pH (range 6.0-8.0). Indocyanine Green, biliverdin and chenodeoxycholate were found to be effective inhibitors of transferases YaYc and YcYc at low (pH 6.0) but not high (pH 8.0) values of pH. Between these extremes of pH intermediate degrees of inhibition were observed. Cholate and taurochenodeoxycholate, however, were ineffective inhibitors of transferase YcYc at all values of pH. The observed differences in bile acids appeared to be due, in part, to differences in their state of ionization. In contrast with the above results, transferase YaYa was inhibited by at least 80% by the non-substrate ligands at all values of pH. These effects of pH on the three transferases could not be accounted for by pH-induced changes in the enzyme's affinity for the inhibitor. Thus those glutathione S-transferases that contain the Yc subunit are able to act simultaneously as both enzymes and binding proteins. In addition to enzyme structure, the state of ionization of the non-substrate ligands may also influence whether the transferases can perform both functions simultaneously.  相似文献   

6.
Binding of bile acids by glutathione S-transferases from rat liver   总被引:4,自引:0,他引:4  
Binding of bile acids and their sulfates and glucuronides by purified GSH S-transferases from rat liver was studied by 1-anilino-8-naphthalenesulfonate fluorescence inhibition, flow dialysis, and equilibrium dialysis. In addition, corticosterone and sulfobromophthalein (BSP) binding were studied by equilibrium and flow dialysis. Transferases YaYa and YaYc had comparable affinity for lithocholic (Kd approximately 0.2 microM), glycochenodeoxycholic (Kd approximately to 60 microM), and cholic acid (Kd approximately equal 60 microM), and BSP (Kd approximately 0.09 microM). YaYc had one and YaYa had two high affinity binding sites for these ligands. Transferases containing the Yb subunit had two binding sites for these bile acids, although binding affinity for lithocholic acid (Kd approximately 4 microM) was lower than that of transferases with Ya subunit, and binding affinities for the other bile acids were comparable to the Ya family. Sulfated bile acids were bound with higher affinity and glucuronidated bile acids with lower affinity by YaYa and YaYc than the respective parent bile acids. In the presence of GSH, binding of lithocholate by YaYc was unchanged and binding by YbYb' was inhibited. Conversely, GSH inhibited the binding of cholic acid by YaYc but had less effect on binding by YbYb'. Cholic acid did not inhibit the binding of lithocholic acid by YaYa.  相似文献   

7.
Three cationic glutathione S-transferase forms isolated from rat liver were characterized as dimers that originated from different combinations of two subunit types, Ya and Yc. The cationic forms were purified using lysyl glutathione affinity matrices and were chromatographically resolved from anionic glutathione S-transferases that contain Yb subunits. The three classes of cationic transferase exhibited similar specific activities with 1-chloro-2,4-dinitrobenzene as a substrate, all forms cross-reacted with antibodies to glutathione S-transferase B, and all had comparable secondary structures and tryptophan fluorescence properties. In spite of those similarities, the Yc-containing forms were clearly distinguishable from Ya forms on the basis of characteristic differences in circular dichroic patterns associated with their aromatic side chains. All cationic transferases bound bilirubin with stoichiometric ratios of 1 mol/dimeric protein molecule, but discrete differences in mode of binding were ascribed to forms containing Ya subunits as compared to Yc dimers. Binding to Yc forms was of lower affinity and may be associated with the catalytic region of the protein since glutathione effectively displaced bilirubin from the Yc component.  相似文献   

8.
9.
The glutathione S-transferases are a family of dimeric enzymes that catalyze the reaction between GSH and a variety of electrophiles. Two closely related isozymes, referred to as YaYa and YcYc, were purified from rat liver. A radiolabeled azido derivative of glutathione (S-(p-azidophenacyl)[3H]glutathione) was prepared and used to label covalently the active site of the above two glutathione S-transferases. The noncovalently bound affinity label was a competitive inhibitor of glutathione S-transferase YaYa toward both 1-chloro-2,4-dinitrobenzene and GSH. The covalently labeled enzymes no longer bound to a GSH-affinity column, and covalent labeling was reduced in the presence of GSH and S-(dinitrophenyl)glutathione. These results suggest that the affinity label was binding at the active site. The covalently labeled enzymes were digested with trypsin, and the labeled peptides were purified by HPLC and then sequenced. A single-labeled peptide was identified in the tryptic digest of the YaYa isozyme, whereas two labeled peptides were present in the tryptic digest of YcYc. The Ya peptide sequence was identical with the published deduced sequence of amino acids between residues 212 and 218 and the sequences of the two peptides purified from Yc were identical with the deduced sequence of amino acids between 91 and 110 and 206 and 218. Hence, the Ya peptide and the smaller peptide purified from Yc came from the same region of the Ya and Yc subunits. This common region and a second region of the Yc subunit appear to form a portion of the active site of these two forms of glutathione S-transferase.  相似文献   

10.
Rat liver glutathione S-transferases have previously been defined by their elution behaviour from DEAE-cellulose and CM-cellulose as M, E, D, C, B, A and AA. These enzymes are dimeric proteins which comprise subunits of mol.wt. 22 000 (Ya), 23 500 (Yb) or 25 000 (Yc). Evidence is presented that YaYa protein, one of two previously described lithocholate-binding proteins which exhibit transferase activity, is an additional enzyme which is not included in the M, E, D, C, B, A and AA nomenclature. We therefore propose that this enzyme is designated transferase YaYa. Transferases YaYa, C, A and AA have molecular weights of 44 000, 47 000, 47 000 and 50 000 respectively and each comprises two subunits of identical size. These enzymes were purified to allow a study of their structural and functional relationships. In addition, transferase A was further resolved into three forms (A1, A2 and A3) which possess identical activities and structures and appear to be the product of a single gene. Transferases YaYa, C, A and AA each had distinct enzymic properties and were inhibited by cholate. The recently proposed proteolytic model, which attributes the presence of multiple forms of glutathione S-transferase activity to partial proteolysis of transferase AA, was tested and shown to be highly improbable. Peptide maps showed significant differences between transferases YaYa, C, A and AA. Immunotitration studies demonstrated that antisera raised against transferases YaYa and C did not precipitate transferase AA.  相似文献   

11.
Using an affinity matrix coupled with cholic acid, two proteins that recognise bile acids were isolated from rat liver cytosol. One protein of molecular weight 68 000 was immunologically identical to rat albumin. The other protein was of molecular weight 46 000. On discontinuous sodium dodecyl sulphate-polyacrylamide gel electrophoresis the 46 000 molecular weight protein dissociated to a single band with an RF value identical to the Yb subunit of the bromosulphophthalein-binding fraction (Y-fraction) of whole liver cytosol. The monomers of purified ligandin under these conditions resolved into two bands which corresponded to the Ya and Yc subunits of liver cytosol Y-fraction. Anti-serum to the purified ligandin reacted monospecifically with purified ligandin and whole liver cytosol, but did not cross-react with the Yb dimer eluted from the affinity column. The Yb dimer was shown to possess glutathione-S-transferase activity with a substrate specificity distinct from ligandin but similar to glutathione-S-transferase C. Cholic acid inhibited the catalytic activity of the transferase.  相似文献   

12.
On the multiplicity of rat liver glutathione S-transferases   总被引:7,自引:0,他引:7  
Rat liver glutathione S-transferases have been purified to apparent electrophoretic homogeneity by S-hexylglutathione-linked Sepharose 6B affinity chromatography and CM-cellulose column chromatography. At least 11 transferase activity peaks can be resolved including five Yb size homodimeric isozymes, two Yc size homodimeric isozymes, one Ya homodimeric isozyme, one Y alpha homodimeric isozyme, and two Ya-Yc heterodimeric isozymes. Distribution of the GSH peroxidase activity among the CM-cellulose column fractions suggests the existence of further multiplicity in this isozyme family. Substrate specificity patterns of the Yb subunit isozymes revealed a possibility that each of the five Yb-containing isozymes is composed of a different homodimeric Yb size subunit composition. Our findings on the increasing multiplicity of glutathione S-transferase isozymes are consistent with the notion that multiple isozymes of overlapping substrate specificities are required to detoxify a multitude of xenobiotics in addition to serving other important physiological functions.  相似文献   

13.
GSH S-transferases are dimeric enzymes. The subunits in the rat are resolved into six types, designated Yf, Yk, Ya, Yn, Yb and Yc, by discontinuous SDS/polyacrylamide-gel electrophoresis [Hayes (1986) Biochem. J. 233, 789-798]. The relative electrophoretic mobility of the Ya and Yk subunits is dependent on the amount of cross-linker (NN'-methylenebisacrylamide) in the resolving gel. At low degrees of cross-linking, CBis 0.6% (w/w), the Yk and Ya subunits possess a faster anodal mobility than do the Yf, Yn, Yb and Yc subunits (i.e. order of mobility Yk greater than Ya greater than Yf greater than Yn greater than Yb greater than Yc), whereas at higher degrees of cross-linking, CBis 5.0% (w/w), Yf subunits possess the fastest mobility (i.e. order of mobility Yf greater than Yk greater than or equal to Yn greater than Yb greater than or equal to Ya greater than Yc). Resolving gels that contain low concentrations of cross-linker [CBis 0.6% (w/w)] allow the resolution of a hitherto unrecognized polypeptide that is isolated by S-hexyl-GSH-Sepharose affinity chromatography. This new polypeptide, which we have designated Yb, is normally obscured by the main Yb band in resolving gels that comprise concentrations of cross-linker of at least CBis 1.6% (w/w). The Ya- and Yb-type subunits in guinea pig, mouse, hamster and man were identified by immuno-blotting and their apparent Mr values in different electrophoresis systems were determined. The Ya subunits in all species studied possess a variable cross-linker-dependent mobility during electrophoresis. Since the transferase subunits are currently classified according to their mobilities during SDS/polyacrylamide-gel electrophoresis, it is apparent that the variable electrophoretic behaviour of the Ya and Yk subunits may lead to the mis-identification of enzymes.  相似文献   

14.
Two types of 25 000-Mr subunits are present in rat lung glutathione S-transferase I (pI 8.8). These subunits, designated Yc and Yc', are immunologically and functionally distinct from each other. The homodimers YcYc (pI 10.4) and Yc'Yc' (pI 7.6) obtained by hybridization in vitro of the two subunits of glutathione S-transferase I (pI 8.8) were isolated and characterized. Results of these studies indicate that only the Yc subunits express glutathione peroxidase activity and cross-react with the antibodies raised against glutathione S-transferase B (YaYc) or rat liver. The Yc' subunits do not express glutathione peroxidase activity and do not cross-react with the antibodies raised against glutathione S-transferase B of rat liver. The amino acid compositions of these two subunits are also different. These two subunits can also be separated by the two-dimensional gel electrophoresis of glutathione S-transferase I (pI 8.8) of rat lung.  相似文献   

15.
H C Lai  G Grove    C P Tu 《Nucleic acids research》1986,14(15):6101-6114
We have isolated a Yb-subunit cDNA clone from a GSH S-transferase (GST) cDNA library made from rat liver polysomal poly(A) RNAs. Sequence analysis of one of these cDNA, pGTR200, revealed an open reading frame of 218 amino acids of Mr = 25,915. The deduced sequence is in agreement with the 19 NH2-terminal residues for GST-A. The sequence of pGTR200 differs from another Yb cDNA, pGTA/C44 by four nucleotides and two amino acids in the coding region, thus revealing sequence microheterogeneity. The cDNA insert in pGTR200 also contains 36 nucleotides in the 5' noncoding region and a complete 3' noncoding region. The Yb subunit cDNA shares very limited homology with those of the Ya or Yc cDNAs, but has relatively higher sequence homology to the placental subunit Yp clone pGP5. The mRNA of pGTR200 is not expressed abundantly in rat hearts and seminal vesicles. Therefore, the GST subunit sequence of pGTR200 probably represents a basic Yb subunit. Genomic DNA hybridization patterns showed a complexity consistent with having a multigene family for Yb subunits. Comparison of the amino acid sequences of the Ya, Yb, Yc, and Yp subunits revealed significant conservation of amino acids (approximately 29%) throughout the coding sequences. These results indicate that the rat GSTs are products of at least four different genes that may constitute a supergene family.  相似文献   

16.
The administration of interferon-alpha/beta to female nude (nu/nu) mice caused significant changes in the levels of the cytosolic hepatic glutathione transferases. Antibodies raised against rat subunits, Ya, Yc, Yb1, Yb2, and Yk, and the subunits of the human transferases, mu (YbYb), lambda (YfYf), and epsilon (B1B1) all reacted with enzymes in the mouse and were used to demonstrate suppression and induction of transferase levels. Western blot analysis followed by semiquantitation by laser scanning showed the Ya, Yb1, Yb2, Yc, Yk, mu, and B1 subunits to be suppressed by 11, 11, 44, 30, 12, 14, and 47%, respectively, by interferon treatment. In contrast to these findings, the Yf subunit was induced 5-7-fold. A concomitant 220% increase was observed in the specific activity of the hepatic cytosol for ethacrynic acid, a substrate for the Yf subunit. Changes in the levels of transferase enzymes in normal and tumor cells may have significant implications when cytotoxic drugs are used in combination with interferons in cancer therapy. The Yf subunit, an enzyme found in human tumors and in placenta (Polidoro, G., Di Mio, C., Del Boccio, G., Zulli, P., and Fererici, G. (1980) Biochem. Pharmacol. 29, 1677-1680) has also been shown to be elevated in hepatic preneoplastic lesions (Kitahara, A., Satoh, K., Nishimura, K., Ishikawa, T., Ruike, K., Sato, K., Tsuda, H., and Ito, N. (1984) Cancer Res. 44, 2698-2703). These data indicate that the Yf subunit represents a potentially important interferon-inducible gene product.  相似文献   

17.
Six forms of glutathione S-transferase (GST) designated as GST 9.3, GST 7.5, GST 6.6, GST 6.1, GST 5.7 and GST 4.9 have been purified to homogeneity from rat brain. All GST isoenzymes of rat brain are apparent homodimers of one of the three type subunits, Ya, Yb, or Yc. More than 60% of total GST activity of rat brain GST activity is associated with the isoenzymes containing only the Yb type of subunits. In these respects brain GST isoenzymes differ from those of lung and liver. The Ya, Yb, and Yc type subunits of brain GST are immunologically similar to the corresponding subunits of liver and lung GST. The isoelectric points and kinetic properties of the Yb type subunit dimers in brain are strikingly different from those of the Yb type dimers present among liver GST isoenzymes indicating subtle differences between these subunits of brain and liver.  相似文献   

18.
High multiplicity of GSH S-transferases (GST) with overlapping substrate specificities may be essential to their multiple roles in xenobiotics metabolism, drug biotransformation, and protection against peroxidative damage. Subunit composition analysis of rat liver GSH S-transferases indicated that heterodimer associations were not random, limiting the generation of GST isozyme multiplicity. We have analyzed a Yb subunit cDNA clone, pGTR187, that may correspond to an anionic Yb subunit sequence. Comparison with other GSH S-transferase cDNA sequences and blot hybridization results indicates that the multiple Yb subunits are encoded by a multigene family. This Yb subunit sequence has very limited homology to Ya and Yc subunit cDNAs, but slightly more sequence homology to the Yp subunit cDNA. More consistent sequence homology is found at the amino acid level with 28% conservation throughout the coding sequences. These results and results published from other laboratories clearly indicate that rat GSH S-transferases are products of at least four different gene families that constitute a supergene family. Conceptually, the supergene family may encode GSH S-transferases of very different structures that are essential to metabolize a multitude of xenobiotics in addition to serving other physiologically important functions.  相似文献   

19.
Ciprofibrate (2-[4-(2,2-dichlorocyclopropyl) phenoxy]2-methyl propionic acid) which is a hypolipidemic agent and has been shown to cause peroxisome proliferation, non-competitively inhibits glutathione S-transferase activity of rat liver, both in vivo and in vitro. Among all the glutathione S-transferases of rat liver, ligandin is maximally inhibited by ciprofibrate. Studies with the purified glutathione S-transferases of rat liver indicate that the affinities of different subunits of liver enzymes for ciprofibrate are in the order Ya greater than Yb, Yb' greater than Yc.  相似文献   

20.
(1) The tissue-specific expression of various glutathione-dependent enzymes, including glutathione S-transferase (GST), glutathione peroxidase and glyoxalase I, has been studied in bovine adrenals, brain, heart, kidney, liver, lung and spleen. Of the organs studied, liver was found to possess the greatest GST and glyoxalase I activity, and spleen the greatest glutathione peroxidase activity. The adrenals contained large amounts of these glutathione-dependent enzymes, but significant differences were observed between the cortex and medulla. (2) GST and glyoxalase I activity were isolated by S-hexylglutathione affinity chromatography. Glyoxalase I was found in all the organs examined, but GST exhibited marked tissue-specific expression. (3) The alpha, mu and pi classes of GST (i.e., those that comprise respectively Ya/Yc, Yb/Yn and Yf subunits) were all identified in bovine tissues. However, the Ya and Yc subunits of the alpha class GST were not co-ordinately regulated nor were the Yb and Yn subunits of the mu class GST. (4) Bovine Ya subunits (25.5-25.7 kDa) were detected in the adrenal, liver and kidney, but not in brain, heart, lung or spleen. The Yc subunit (26.4 kDa) was expressed in all those organs which expressed the Ya subunit, but was also found in lung. The mu class Yb (27.0 kDa) and Yn (26.1 kDa) subunits were present in all organs; however, brain, lung and spleen contained significantly more Yn than Yb type subunits. The pi class Yf subunit (24.8 kDa) was detected in large amounts in the adrenals, brain, heart, lung and spleen, but not in kidney or liver. (5) Gradient affinity elution of S-hexylglutathione-Sepharose showed that the bovine proteins that bind to this matrix elute in the order Ya/Yc, Yf, Yb/Yn and glyoxalase I. (6) In conclusion, the present investigation has shown that bovine GST are much more complex than previously supposed; Asaoka (J. Biochem. 95 (1984) 685-696) reported the purification of mu class GST but neither alpha nor pi class GST were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号