首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genes of the major histocompatibility complex (MHC) play a pivotal role in the vertebrate immune system and are attractive markers for functional, fitness-related, genetic variation. Although bats (Chiroptera) represent the second largest mammalian order and are prone to various emerging infectious diseases, little is known about MHC evolution in bats. In the present study, we examined expressed MHC class II DRB sequences (exons 1 to 4) of New World bat species, Saccopteryx bilineata, Carollia perspicillata, Noctilio albiventris and Noctilio leporinus (only exon 2). We found a wide range of copy number variation of DRB loci with one locus detected in the genus Noctilio and up to ten functional loci observed in S. bilineata. Sequence variation between alleles of the same taxa was high with evidence for positive selection. We found statistical support for recombination or gene conversion events among sequences within the same but not between bat species. Phylogenetic relationships among DRB alleles provided strong evidence for independent evolution of the functional MHC class II DRB genes in the three investigated species, either by recent gene duplication, or homogenization of duplicated loci by frequent gene conversion events. Phylogenetic analysis of all available chiropteran DRB exon 2 sequences confirmed their monophyletic origin within families, but revealed a possible trans-species mode of evolution pattern in congeneric bat species, e.g. within the genera Noctilio and Myotis. This is the first study investigating phylogenetic relationships of MHC genes within bats and therefore contributes to a better understanding of MHC evolution in one of the most dominant mammalian order.  相似文献   

2.
The phylogenetic position of the lesser hedgehog tenrec, Echinops telfairi, was studied on the basis of analysis of the concatenated sequences of 12 mitochondrial protein‐coding genes. In addition to the tenrec, the analysis included two other representatives of the insectivore order Lipotyphla, the hedgehog and the mole. The eutherian tree was rooted with three non‐eutherian mammalian taxa. The analysis joined the tenrec, the African elephant (order Proboscidea) and the aardvark (order Tubulidentata) on a common branch. The three lipotyphlan taxa, the tenrec (Tenrecidae), the mole (Talpidae) and the hedgehog (Erinaceidae) were dispersed in the eutherian tree, demonstrating lipotyphlan polyphyly.  相似文献   

3.
The complete mitochondrial genome was obtained from a microchiropteran bat, Artibeus jamaicensis. The presumptive amino acid sequence for the protein-coding genes was compared with predicted amino acid sequences from several representatives of other mammalian orders. Data were analyzed using maximum parsimony, maximum likelihood, and neighbor joining. All analyses placed bats as the sister group of carnivores, perissodactyls, artiodactyls, and cetaceans (e.g., 100% bootstrap value with both maximum parsimony and neighbor joining). The data strongly support a new hypothesis about the origin of bats, specifically a bat/ferungulate grouping. None of the analyses supported the superorder Archonta (bats, flying lemurs, primates, and tree shrews). Our hypothesis regarding the relationship of bats to other eutherian mammals is concordant with previous molecular studies and contrasts with hypotheses based solely on morphological criteria and an incomplete fossil record. The A. jamaicensis mitochondrial DNA control region has a complex pattern of tandem repeats that differs from previously reported chiropteran control regions. Received: 22 January 1998 / Accepted: 3 June 1998  相似文献   

4.
Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf‐nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long‐wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss‐of‐function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave‐roosting species. These mutations in leaf‐nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade‐off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.  相似文献   

5.
Members of the family Cimicidae (Heteroptera) are obligate haematophagous ectoparasites. The Cimex pipistrelli species group parasitizes on bats, the likely ancestral hosts of the whole family. Based on morphology, it was suggested that three species of the group were present in the West‐Palaearctic region, although their validity remained a matter of discussion. Surprisingly, the status of these species has not been studied from the point of view of host specificity. We examined the diversification of the species group using morphological data, including the putative diagnostic characters, and sequences of one mitochondrial (cytochrome oxidase subunit I, COI) and four nuclear loci (internal transcribed spacer 2, 18S and 28s ribosomal genes and elongation factor 1 subunit α). This was carried out on a sample of 225 individuals from 69 bat roosts and 44 mist‐netted bats, altogether representing 12 bat species from 13 European countries and Lebanon. We revealed 27 mitochondrial haplotypes representing two distinct haplogroups and one outlying haplotype. The extent of morphological variability of specimens representing both haplogroups covers the range of characters reported for all three recognized species; therefore, the haplogroups clearly do not correspond to any described species. Also, the very limited variability found in the nuclear sequences of the cimicid bugs examined suggests that separate species do not exist in the region. We found considerable morphological differentiation among samples from different bat species, although individuals representing particular mitochondrial haplogroups often live sympatrically and on the same host species. It seems that batbugs are morphologically adapted to a particular bat host despite the low genetic structuring among individuals parasitizing different species of bats.  相似文献   

6.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

7.
翼手目动物(蝙蝠)的食性多样性丰富,其食物包括昆虫、鱼类、两栖动物、爬行动物、鸟类、哺乳动物、植物果实、花、花粉、花蜜、叶片和血液等。其中,大约70%的蝙蝠主要以昆虫为食,而以血液为食的吸血蝙蝠只有3种,它们是哺乳动物中唯一的仅以血液为食的动物类群。因此,吸血蝙蝠是研究动物食性演化的重要模式动物。本文综述了吸血蝙蝠在形态学、生理学、行为学、感觉系统和肠道微生物等方面的研究,指出了吸血蝙蝠食性特化的适应性特征。随着普通吸血蝠高质量基因组的公布,我们将有机会探究食性相关基因在吸血蝙蝠中的功能改变,阐明动物食性转变的分子机理。本文将为吸血蝙蝠和其它动物食性转变的研究提供有益的参考。  相似文献   

8.
Immunologically important genes of the major histocompatibility complex (MHC) have been characterized in a number of avian species with the general finding of considerable variation in size and structural organization among organisms. A range of nonpasserines which represent early-diverging Neoave lineages have been described as having only one MHC class II β locus potentially leading to the conclusion that this is the ancestral condition. Here, we examine the monotypic, early-diverging, critically endangered kakapo, Strigops habroptilus, for allelic variation at MHC class II β exon 2, as part of species’ recovery efforts. We found two to four confirmed sequence variants per individual indicating the presence of more than one MHC class II β locus. Given the kakapo’s basal evolutionary status, evidence for multiple MHC class II β loci seems to counter the proposed mono-locus history of modern birds. However, MHC gene duplication, maintenance, and loss among and within bird species may confound avian relationships making it difficult to elucidate the ancestral state. This study adds essential data for disentangling the course of MHC structural evolution in birds.  相似文献   

9.
10.
Ru B  Han N  He G  Brayer K  Zhang S  Wang Z 《Biochemical genetics》2012,50(3-4):213-226
GJB6 plays a crucial role in hearing. In mammals, bats use ultrasonic echolocation for orientation and locating prey. To investigate the evolution of GJB6 in mammals, we cloned the full-length coding region of GJB6 from 16 species of bats and 4 other mammal species and compared them with orthologous sequences in 11 other mammals. The results show purifying selection on GJB6 in mammals, as well as in the bat lineage, which indicates an important role for GJB6 in mammal hearing. We also found one unique amino acid substitution shared by 16 species of bats and 10 shared by two species of artiodactyls. This positioned the artiodactyls at an abnormal location in the gene tree. In addition, the cytoplasmic loop and carboxy terminus were more variable than other domains in all the mammals. These results demonstrate that GJB6 is basically conserved in mammals but has undergone relatively rapid evolution in particular lineages and domains.  相似文献   

11.
12.
Bats are known to harbor a number of emerging and re-emerging zoonotic viruses, many of which are highly pathogenic in other mammals but result in no clinical symptoms in bats. The ability of bats to coexist with viruses may be the result of rapid control of viral replication early in the immune response. IFNs provide the first line of defense against viral infection in vertebrates. Type III IFNs (IFN-λs) are a recently identified IFN family that share similar antiviral activities with type I IFNs. To our knowledge, we demonstrate the first functional analysis of type III IFNs from any species of bat, with the investigation of two IFN-λ genes from the pteropid bat, Pteropus alecto. Our results demonstrate that bat type III IFN has similar antiviral activity to type I and III IFNs from other mammals. In addition, the two bat type III IFNs are differentially induced relative to each other and to type I IFNs after treatment or transfection with synthetic dsRNA. Infection with the bat paramyxovirus, Tioman virus, resulted in no upregulation of type I IFN production in bat splenocytes but was capable of inducing a type III IFN response in three of the four bats tested. To our knowledge, this is the first report to describe the simultaneous suppression of type I IFN and induction of type III IFN after virus infection. These results may have important implications for the role of type III IFNs in the ability of bats to coexist with viruses.  相似文献   

13.
Pancreatic ribonuclease gene (RNASE1) was previously shown to have undergone duplication and adaptive evolution related to digestive efficiency in several mammalian groups that have evolved foregut fermentation, including ruminants and some primates. RNASE1 gene duplications thought to be linked to diet have also been recorded in some carnivores. Of all mammals, bats have evolved the most diverse dietary specializations, mainly including frugivory and insectivory. Here we cloned, sequenced and analyzed RNASE1 gene sequences from a range of bat species to determine whether their dietary adaptation is mirrored by molecular adaptation. We found that seven insect-eating members of the families Vespertilionidae and Molossidae possessed two or more duplicates, and we also detected three pseudogenes. Reconstructed RNASE1 gene trees based on both Bayesian and maximum likelihood methods supported independent duplication events in these two families. Selection tests revealed that RNASE1 gene duplicates have undergone episodes of positive selection indicative of functional modification, and lineage-specific tests revealed strong adaptive evolution in the Tadarida β clade. However, unlike the RNASE1 duplicates that function in digestion in some mammals, the bat RNASE1 sequences were found to be characterized by relatively high isoelectric points, a feature previously suggested to promote defense against viruses via the breakdown of double-stranded RNA. Taken together, our findings point to an adaptive diversification of RNASE1 in these two bat families, although we find no clear evidence that this was driven by diet. Future experimental assays are needed to resolve the functions of these enzymes in bats.  相似文献   

14.
15.
The major histocompatibility complex (MHC) includes highly polymorphic gene families encoding proteins crucial to the vertebrate acquired immune system. Classical MHC class I (MHCI) genes code for molecules expressed on the surfaces of most nucleated cells and are associated with defense against intracellular pathogens, such as viruses. These genes have been studied in a few wild bird species, but have not been studied in long-distance migrating shorebirds. Red Knots Calidris canutus are medium-sized, monogamous sandpipers with migratory routes that span the globe. Understanding how such long-distance migrants protect themselves from disease has gained new relevance since the emergence of avian-borne diseases, including intracellular pathogens recognized by MHCI molecules, such as avian influenza. In this study, we characterized MHCI genes in knots and found 36 alleles in eight individuals and evidence for six putatively functional and expressed MHCI genes in a single bird. We also found evidence for recombination and for positive selection at putative peptide binding sites in exons 2 and 3. These results suggest surprisingly high MHC diversity in knots, given their demographic history. This may be a result of selection from diverse pathogens encountered by shorebirds throughout their annual migrations.  相似文献   

16.
White‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti‐Pd immune responses, indicating pathogen‐mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre‐ (Wisconsin) and post‐ (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014–2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1–5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre‐ and post‐WNS populations, indicating no signal of selection on MHC genes. However, post‐WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions.  相似文献   

17.
Duplications are an important mechanism for the emergence of genetic novelties. Reports on duplicated genes are numerous, and mechanisms for polyploidization or local gene duplication are beginning to be understood. When a local duplication is studied, searches are usually done gene-by-gene, and the size of duplicated segments is not often investigated. Therefore, we do not know if the gene in question has duplicated alone or with other genes, implying that "en bloc" duplications are poorly studied. We propose a method for identification of "en bloc" duplication using mapping, phylogenetic and statistical analyses. We show that two segments present in the major histocompatibility complex (MHC) region of human chromosome 6 have resulted from an "en bloc" duplication that took place between divergence of amniotes and methaterian/eutherian separation. These segments contain members of the same multigenic families, namely olfactory receptors genes, genes encoding proteins containing B30.2 domain, genes encoding proteins containing immunoglobulin V domain and MHC class I genes. We will discuss the fact that olfactory receptors and MHC genes have undergone positive selection, which could have helped in fixation of the surrounding genes.  相似文献   

18.
Bats are the only mammals with the capacity for powered flight. When flying, they need abundant energy and oxygen. According to previous works, the hemoglobin (Hb) oxygen loading function of bats is insensitive to variations in body temperature, although different bat species have different heat sensitivity. We cloned Hb α-chain sequences from eight bat species to investigate whether they have different characteristics. We found that Hb in the bat lineages is under purifying selection, which accords with the importance of its function in bats. Three turn regions in bat Hb, however, have distinct evolutionary rates compared with those of other mammals, and the codons in these regions have an accelerated rate of evolution. These codons are under divergent selection in bats. These changes in Hb may have occurred in response to the physiological requirements of the species concerned, as adaptations to different lifestyles.  相似文献   

19.
Bats are increasingly recognized as reservoir species for a variety of zoonotic viruses that pose severe threats to human health. While many RNA viruses have been identified in bats, little is known about bat retroviruses. Endogenous retroviruses (ERVs) represent genomic fossils of past retroviral infections and, thus, can inform us on the diversity and history of retroviruses that have infected a species lineage. Here, we took advantage of the availability of a high-quality genome assembly for the little brown bat, Myotis lucifugus, to systematically identify and analyze ERVs in this species. We mined an initial set of 362 potentially complete proviruses from the three main classes of ERVs, which were further resolved into 13 major families and 86 subfamilies by phylogenetic analysis. Consensus or representative sequences for each of the 86 subfamilies were then merged to the Repbase collection of known ERV/long terminal repeat (LTR) elements to annotate the retroviral complement of the bat genome. The results show that nearly 5% of the genome assembly is occupied by ERV-derived sequences, a quantity comparable to findings for other eutherian mammals. About one-fourth of these sequences belong to subfamilies newly identified in this study. Using two independent methods, intraelement LTR divergence and analysis of orthologous loci in two other bat species, we found that the vast majority of the potentially complete proviruses identified in M. lucifugus were integrated in the last ∼25 million years. All three major ERV classes include recently integrated proviruses, suggesting that a wide diversity of retroviruses is still circulating in Myotis bats.  相似文献   

20.
Evolution of glucagon genes   总被引:1,自引:0,他引:1  
Statistical analyses of DNA sequences of the preproglucagon genes from bovine, human, hamster, and anglerfish suggest that a gene duplication creating two anglerfish genes (AF I and II) occurred about 160 Myr ago, long after the separation of fish and mammals. The analyses further suggest that the internal duplication producing the glucagon and glucagon-like peptide II (GLP-II) regions occurred about 1.2 billion years ago, which would indicate that the GLP-II region was present in the ancestral anglerfish sequence but was silenced or deleted before the gene duplication separating AF I and II. The glucagon-like peptide I (GLP-I) was derived from a duplication of the ancestral glucagon region about 800 Myr ago. The rate of synonymous substitution in these genes is approximately 4.3 x 10(-9) substitutions per year per synonymous site. The rate of nonsynonymous substitution in the signal peptide region is about 1.1 x 10(-9) substitutions per year per nonsynonymous site, a high rate comparable to that in the C-peptide region of preproinsulin. The rate of nonsynonymous substitution in the glicentin-related pancreatic polypeptide (GRPP) region is 0.63 x 10(-9) for the comparisons between mammalian species and 1.8 x 10(-9) for the comparisons between fish and mammals; the moderate rate in mammals suggests a physiological role for GRPP. The glucagon region is extremely conservative; no nonsynonymous substitution is observed in the mammalian genes, and a nonsynonymous rate of 0.18 x 10(-9) was obtained from the comparisons between fish and mammals. In the GLP-I region, the rate of nonsynonymous substitution was estimated to be 0.08 x 10(-9) for the comparisons between mammalian species and 0.30 x 10(- 9) for the comparisons between fish and mammals. In the GLP-II region, the rate was estimated to be 0.25 x 10(-9) for the comparisons between mammalian species. Thus, GLP-I and II are also very conservative, which suggests an important physiological role for these peptides.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号