首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. ‘species richness’) may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include ‘response diversity’, describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio‐temporal complementarity among species, leading to long‐term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change.  相似文献   

2.
Understanding the responses of biodiversity to drivers of change and the effects of biodiversity on ecosystem properties and ecosystem services is a key challenge in the context of global environmental change. We performed a systematic review and meta‐analysis of the scientific literature linking direct drivers of change and ecosystem services via functional traits of three taxonomic groups (vegetation, invertebrates, and vertebrates) to: (1) uncover trends and research biases in this field; and (2) synthesize existing empirical evidence. Our results show the existence of important biases in published studies related to ecosystem types, taxonomic groups, direct drivers of change, ecosystem services, geographical range, and the spatial scale of analysis. We found multiple evidence of links between drivers and services mediated by functional traits, particularly between land‐use changes and regulating services in vegetation and invertebrates. Seventy‐five functional traits were recorded in our sample. However, few of these functional traits were repeatedly found to be associated with both the species responses to direct drivers of change (response traits) and the species effects on the provision of ecosystem services (effect traits). Our results highlight the existence of potential “key functional traits,” understood as those that have the capacity to influence the provision of multiple ecosystem services, while responding to specific drivers of change, across a variety of systems and organisms. Identifying “key functional traits” would help to develop robust indicator systems to monitor changes in biodiversity and their effects on ecosystem functioning and ecosystem services supply.  相似文献   

3.
Predicting ecosystem responses to global change is a major challenge in ecology. A critical step in that challenge is to understand how changing environmental conditions influence processes across levels of ecological organization. While direct scaling from individual to ecosystem dynamics can lead to robust and mechanistic predictions, new approaches are needed to appropriately translate questions through the community level. Species invasion, loss, and turnover all necessitate this scaling through community processes, but predicting how such changes may influence ecosystem function is notoriously difficult. We suggest that community‐level dynamics can be incorporated into scaling predictions using a trait‐based response–effect framework that differentiates the community response to environmental change (predicted by response traits) and the effect of that change on ecosystem processes (predicted by effect traits). We develop a response‐and‐effect functional framework, concentrating on how the relationships among species' response, effect, and abundance can lead to general predictions concerning the magnitude and direction of the influence of environmental change on function. We then detail several key research directions needed to better scale the effects of environmental change through the community level. These include (1) effect and response trait characterization, (2) linkages between response‐and‐effect traits, (3) the importance of species interactions on trait expression, and (4) incorporation of feedbacks across multiple temporal scales. Increasing rates of extinction and invasion that are modifying communities worldwide make such a research agenda imperative.  相似文献   

4.
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.  相似文献   

5.
6.
Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes. Functional redundancy is calculated as the species richness within each group, and response diversity as the multivariate within-group dispersion in response trait space, using traits that influence responses to disturbances. Meta-analysis across all datasets showed that land-use intensification significantly reduced both functional redundancy and response diversity, although specific relationships varied considerably among the different land-use gradients. These results indicate that intensified management of ecosystems for resource extraction can increase their vulnerability to future disturbances.
Ecology Letters (2010) 13: 76–86  相似文献   

7.
Land‐use change is one of the primary drivers of species loss, yet little is known about its effect on other components of biodiversity that may be at risk. Here, we ask whether, and to what extent, landscape simplification, measured as the percentage of arable land in the landscape, disrupts the functional and phylogenetic association between primary producers and consumers. Across seven European regions, we inferred the potential associations (functional and phylogenetic) between host plants and butterflies in 561 seminatural grasslands. Local plant diversity showed a strong bottom‐up effect on butterfly diversity in the most complex landscapes, but this effect disappeared in simple landscapes. The functional associations between plant and butterflies are, therefore, the results of processes that act not only locally but are also dependent on the surrounding landscape context. Similarly, landscape simplification reduced the phylogenetic congruence among host plants and butterflies indicating that closely related butterflies become more generalist in the resources used. These processes occurred without any detectable change in species richness of plants or butterflies along the gradient of arable land. The structural properties of ecosystems are experiencing substantial erosion, with potentially pervasive effects on ecosystem functions and future evolutionary trajectories. Loss of interacting species might trigger cascading extinction events and reduce the stability of trophic interactions, as well as influence the longer term resilience of ecosystem functions. This underscores a growing realization that species richness is a crude and insensitive metric and that both functional and phylogenetic associations, measured across multiple trophic levels, are likely to provide additional and deeper insights into the resilience of ecosystems and the functions they provide.  相似文献   

8.
The ecological and evolutionary consequences of extreme events are poorly understood. Here, we tested predictions about species persistence and population genomic change in aquatic insects in 14 Colorado mountain streams across a hydrological disturbance gradient caused by a one in 500‐year rainfall event. Taxa persistence ranged from 39 to 77% across sites and declined with increasing disturbance in relation to species' resistance and resilience traits. For taxa with mobile larvae and terrestrial adult stages present at the time of the flood, average persistence was 84% compared to 25% for immobile taxa that lacked terrestrial adults. For two of six species analysed, genomic diversity (allelic richness) declined after the event. For one species it greatly expanded, suggesting resilience via re‐colonisation from upstream populations. Thus, while resistance and resilience traits can explain species persistence to extreme disturbance, population genomic change varies among species, challenging generalisations about evolutionary responses to extreme events at landscape scales.  相似文献   

9.
The relation between biological diversity and ecosystem functioning is a central theme in ecology. Ecological traits of species are often regarded as a link between structure and function, and trait distributions in a community may change in response to environmental stressors. Likewise, resilience in a community may be derived from the diversity in traits and trait values relevant to a particular stressor. We combine two approaches to test this: a novel trait frequency analysis and a multivariate ordination approach. The two methods are applied on a case study of an earthworm community in a frequently flooded floodplain in the Netherlands. Periodic flooding in floodplains restricts population growth and recolonization of earthworms. The strategies employed by different earthworm species for coping with this stress can be described by a combination of ecological traits. From the literature we compiled 10 ecological traits for the earthworm species encountered along an inundation gradient in the Duursche Waarden floodplain area flanking the river IJssel. Trait frequency analysis showed a greater diversity at low elevation sites of traits considered to be associated to flood tolerance, suggesting greater community resilience to flooding. The ordination analysis using trait composition provided information on which trait classes in the community were related with the inundation stress. Results from both analyses showed that important traits in species to deal with flooding are active dispersal, high hydrophily, diapause and parthenogenetic reproduction. Thus, a further understanding of community resilience was gained by combining traditional ordination analysis with trait diversity analysis.  相似文献   

10.
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate‐induced biomass responses in 12 co‐occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf‐trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition.  相似文献   

11.
Prediction of ecosystem response to global environmental change is a pressing scientific challenge of major societal relevance. Many ecosystems display nonlinear responses to environmental change, and may even undergo practically irreversible ‘regime shifts’ that initiate ecosystem collapse. Recently, early warning signals based on spatiotemporal metrics have been proposed for the identification of impending regime shifts. The rapidly increasing availability of remotely sensed data provides excellent opportunities to apply such model‐based spatial early warning signals in the real world, to assess ecosystem resilience and identify impending regime shifts induced by global change. Such information would allow land‐managers and policy makers to interfere and avoid catastrophic shifts, but also to induce regime shifts that move ecosystems to a desired state. Here, we show that the application of spatial early warning signals in real‐world landscapes presents unique and unexpected challenges, and may result in misleading conclusions when employed without careful consideration of the spatial data and processes at hand. We identify key practical and theoretical issues and provide guidelines for applying spatial early warning signals in heterogeneous, real‐world landscapes based on literature review and examples from real‐world data. Major identified issues include (1) spatial heterogeneity in real‐world landscapes may enhance reversibility of regime shifts and boost landscape‐level resilience to environmental change (2) ecosystem states are often difficult to define, while these definitions have great impact on spatial early warning signals and (3) spatial environmental variability and socio‐economic factors may affect spatial patterns, spatial early warning signals and associated regime shift predictions. We propose a novel framework, shifting from an ecosystem perspective towards a landscape approach. The framework can be used to identify conditions under which resilience assessment with spatial remotely sensed data may be successful, to support well‐informed application of spatial early warning signals, and to improve predictions of ecosystem responses to global environmental change.  相似文献   

12.
Environmental changes due to land use developments, climate change and nitrogen deposition have profound influences on species assemblages. Investigating the dynamics in species composition as a function of underlying traits may increase our understanding of ecosystem functioning and provide a basis for effective conservation strategies. Here, I use a broad array of species traits for butterflies to identify four main components of associated traits. These reflect the spatial use of the landscape, abiotic vulnerability, developmental rate and phenology, and food specialisation, respectively. The first three trait components each contribute to determine Red List status, but only the developmental rate and phenology component is related to recent population trends. I argue that the latter component reflects the environmental impact of nutrient availability and microclimate, as affected by nitrogen deposition. This perspective sheds a new light on ongoing changes in community composition. Thus, a multidimensional view of trait associations allows us to move beyond the simplistic specialist–generalist dichotomy, renew our view on species-specific studies and help in setting new priorities for conservation.  相似文献   

13.
The rapid ecological shifts that are occurring due to climate change present major challenges for managers and policymakers and, therefore, are one of the main concerns for environmental modelers and evolutionary biologists. Species distribution models (SDM) are appropriate tools for assessing the relationship between species distribution and environmental conditions, so being customarily used to forecast the biogeographical response of species to climate change. A serious limitation of species distribution models when forecasting the effects of climate change is that they normally assume that species behavior and climatic tolerances will remain constant through time. In this study, we propose a new methodology, based on fuzzy logic, useful for incorporating the potential capacity of species to adapt to new conditions into species distribution models. Our results demonstrate that it is possible to include different behavioral responses of species when predicting the effects of climate change on species distribution. Favorability models offered in this study show two extremes: one considering that the species will not modify its present behavior, and another assuming that the species will take full advantage of the possibilities offered by an increase in environmental favorability. This methodology may mean a more realistic approach to the assessment of the consequences of global change on species' distribution and conservation. Overlooking the potential of species' phenotypical plasticity may under‐ or overestimate the predicted response of species to changes in environmental drivers and its effects on species distribution. Using this approach, we could reinforce the science behind conservation planning in the current situation of rapid climate change.  相似文献   

14.
Shifts in species'' traits across contrasting environments have the potential to influence ecosystem functioning. Plant communities on unusually harsh soils may have unique responses to environmental change, through the mediating role of functional plant traits. We conducted a field study comparing eight functional leaf traits of seventeen common species located on both serpentine and non-serpentine environments on Lesbos Island, in the eastern Mediterranean. We focused on species'' adaptive strategies across the two contrasting environments and investigated the effect of trait variation on the robustness of core ‘leaf economic’ relationships across local environmental variability. Our results showed that the same species followed a conservative strategy on serpentine substrates and an exploitative strategy on non-serpentine ones, consistent with the leaf economic spectrum predictions. Although considerable species-specific trait variability emerged, the single-trait responses across contrasting environments were generally consistent. However, multivariate-trait responses were diverse. Finally, we found that the strength of relationships between core ‘leaf economic’ traits altered across local environmental variability. Our results highlight the divergent trait evolution on serpentine and non-serpentine communities and reinforce other findings presenting species-specific responses to environmental variation.  相似文献   

15.
绿弯菌的研究现状及展望   总被引:5,自引:0,他引:5  
绿弯菌是一个深度分支的门级别细菌类群,广泛分布于生物圈各种生境。现已生效发表的绿弯菌构成9个纲,但仅包含56个种;基于分子生态学的研究结果表明尚有大量绿弯菌类群仍是未培养状态。绿弯菌形态多样,营养方式和代谢途径十分丰富,参与了C、N、S等一系列重要生源元素的生物地球化学循环过程。研究该类群不仅有助于认识环境中微生物的多样性及其代谢特征,从而更好的理解微生物参与的生态学过程,还有助于揭示微生物对环境的适应及其进化。本文主要综述了绿弯菌的发现历史、营养、代谢及其在元素循环中的作用,并总结了其分离培养和潜在应用价值,最后展望了未来的研究方向,旨在为深入探究绿弯菌的进化、培养和驱动地球化学元素循环等研究提供参考。  相似文献   

16.
Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species'' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values.  相似文献   

17.
Adequately assessing the ecosystem resilience and resistance is a challenging and essential question in the current context of widespread environmental change. Here we suggest the use of a quantitative measure we call Persistence Index (PI) to assess the capacity of communities to maintain their functions and services after disturbances. First, we present the formulation of PI that is based on the diversity, abundance, and redundancy of disturbance- and taxon-specific response traits. Then, we use simulated data sets to study the effects of species richness and the number and frequency of traits on PI values. Finally, we illustrate our approach by assessing the persistence capacity of forest communities in Peninsular Spain and the Balearic Islands in response to fire, drought and windstorm events.The Persistence Index was found to be relatively independent on the number of considered traits, but variable according to the frequency of traits in the community. In the evaluation made with national forest inventory data, PI was found to vary within and among different forest types, being particularly high in stands dominated by non-native species (e.g. Eucalyptus sp.) or in mixed-stands composed by evergreen and deciduous broadleaf species. We also found PI values to increase with the number of species present in the stand, although this relationship saturated due to overlap in species response traits.The presented index is complementary to other approaches developed to study the functional structure of communities through the distribution of species in a functional space. It can be applied to a broad spectrum of communities subjected to different types of stressors, making it a useful tool to guide ecosystem management decisions in a context of changing climate and uncertain disturbance regimes.  相似文献   

18.
淡水鱼类功能生态学研究进展   总被引:5,自引:3,他引:2  
在全球变化和人类活动的影响下,生物多样性正以前所未有的速度丧失,全球生物正经受第六次生物多样性危机。淡水生态系统是最脆弱的生态系统之一。淡水鱼类作为淡水生态系统的重要组成部分,承受着日趋严重的气候变化、栖息地退化、生物入侵和过度捕捞等压力,面临巨大的威胁。在此背景下,如何准确评估鱼类种群和群落对环境变化的响应,以及鱼类群落结构和功能的变化对生态系统功能的影响是淡水鱼类多样性和淡水生态系统保护的关键问题。近年来,淡水鱼类功能生态学的快速发展为解答这一问题提供了一个框架。系统地介绍了淡水鱼类功能生态学主要研究内容、方法、进展及其应用,并着重介绍了淡水鱼类功能特征及其与环境的关系、环境变化下的功能生态学响应研究。据此提出了淡水鱼类功能生态学未来的重点研究方向,指出了其在鱼类多样性保护和资源利用等领域的应用前景。  相似文献   

19.
Measures of functional diversity are expected to predict community responses to land use and environmental change because, in contrast to taxonomic diversity, it is based on species traits rather than their identity. Here, we investigated the impact of landscape homogenisation on plants, butterflies and birds in terms of the proportion of arable field cover in southern Finland at local (0.25 km2) and regional (> 10 000 km2) scales using four functional diversity indices: functional richness, functional evenness, functional divergence and functional dispersion. No uniform response in functional diversity across taxa or scales was found. However, in all cases where we found a relationship between increasing arable field cover and any index of functional diversity, this relationship was negative. Butterfly functional richness decreased with increasing arable field cover, as did butterfly and bird functional evenness. For butterfly functional evenness, this was only evident in the most homogeneous regions. Butterfly and bird functional dispersion decreased in homogeneous regions regardless of the proportion of arable field cover locally. No effect of landscape heterogeneity on plant functional diversity was found at any spatial scale, but plant species richness decreased locally with increasing arable field cover. Overall, species richness responded more consistently to landscape homogenisation than did the functional diversity indices, with both positive and negative effects across species groups. Functional diversity indices are in theory valuable instruments for assessing effects of land use scenarios on ecosystem functioning. However, the applicability of empirical data requires deeper understanding of which traits reliably capture species’ vulnerability to environmental factors and of the ecological interpretation of the functional diversity indices. Our study provides novel insights into how the functional diversity of communities changes in response to agriculturally derived landscape homogenisation; however, the low explanatory power of the functional diversity indices hampers the ability to reliably anticipate impacts on ecosystem functioning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号