共查询到20条相似文献,搜索用时 15 毫秒
1.
Henslow's Sparrows (Ammodramus henslowii) are known to breed in restored grasslands consisting of either warm‐ or cool‐season grasses, but additional information is needed concerning their breeding biology in these two types of grasslands. We compared the abundance, territory sizes, and pairing success of male Henslow's Sparrows in grasslands in west‐central Missouri in 2010 and 2011 using a paired‐treatment design, where warm‐ and cool‐season grasslands were located in close proximity. Selection indices indicated no apparent preference by male Henslow's Sparrows for either type of grassland, and the territory sizes and pairing success of males in cool‐ and warm‐season grasslands did not differ. In addition, we found no significant differences in habitat structure between these grassland types. Thus, our results suggest that the warm‐ and cool‐season grasslands in our study provided suitable habitat for Henslow's Sparrows. Other investigators have drawn similar conclusions for Henslow's Sparrows and for grassland birds in general, with the structural characteristics and, for some species, the size of grasslands being more important for grassland birds than plant species composition. 相似文献
2.
The post‐fledging period is a critical life stage for young grassland birds. Habitat selection by recently fledged birds may differ from that of adults and may change as juveniles transition from the care and protection of parents to independence. To describe patterns of habitat selection during these important life stages, we studied habitat use by juvenile Grasshopper Sparrows (Ammodramus savannarum) in a Conservation Reserve Program grassland in Maryland. We used radio‐telemetry to track daily movement patterns of two age classes of Grasshopper Sparrows during the post‐fledging period. Sparrows were classified as either dependent (<32‐d‐old) or independent (≥32‐d‐old). We characterized the vegetation at 780 vegetation plots (390 plots where birds were located and 390 paired random plots). Microhabitats where dependent birds were found had significantly more bare ground, litter, and plant species richness than paired random plots. In addition, dependent birds were found in plots with less bare ground, more warm‐season grass cover, more total vegetation cover, and more forb cover than plots used by independent birds. Plots where independent birds were located also had significantly more bare ground than random plots. Dependent birds are less able to escape from predators because their flight feathers are not fully grown so they may benefit from remaining in areas of greater vegetation cover. However, juveniles transitioning from dependence to independence must forage on their own, possibly explaining their increased use of more open areas where foraging may be easier. To properly manage habitat for grassland birds, management strategies must consider the changing needs of birds during different stages of development. Our results highlight the importance of diverse grassland ecosystems for juvenile grassland birds during the transition to independence. 相似文献
3.
4.
5.
Sarah Boon 《Ecohydrology》2012,5(3):279-285
Mountain pine beetle (MPB) infestation and salvage logging create a post‐disturbance landscape composed of a patchwork of alive, dead, and clearcut forest stands. Subsequent impacts on runoff generation in snowmelt‐dominated hydrological regimes are largely a function of the proportion of landscape covered by each stand type, but basic information on snow accumulation variations between stand types following beetle infestation is lacking. This study examines snow accumulation in the post‐disturbance landscape of northern interior British Columbia, Canada, to quantify the effects of MPB‐related forest cover change. Field measurements collected in a live and a dead coniferous plot during the 2007 and 2008 winters are compared with those collected in a clearcut (canopy‐free control) to identify inter‐plot differences in snow depth, density, and water equivalent. Interannual variability in snow density and water equivalent is significantly affected by interannual variability in meteorological conditions. In high snow years, the dead and alive plots behave similarly due to the ability of large snowfalls to exceed the interception capacity of the canopy. In low‐to‐average snow years, however, distinct differences in snow accumulation between the dead and alive plots are observed. These are largely due to the canopy structure in the dead plot, which differs significantly from that in the healthy plot largely due to defoliation (needle drop) and the loss of fine branches and stems following beetle infestation. Research results provide key process information for modelling studies examining the effects of these changes on runoff generation at the watershed scale. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
7.
Donald W. Lamm 《Ostrich》2013,84(3):171-173
Association of Cattle Egrets Bubulcus ibis with large herbivores is well documented, but there are few records of their association with large birds. Here we describe the first-known records of foraging interactions between Shoebill Balaeniceps rex and Cattle Egrets. The observations were made at the Malagarasi-Muyovozi Ramsar Site in western Tanzania. Small flocks of egrets approached and foraged within 5 m of a Shoebill, which was sometimes forced to move from its hunting pool and by doing so it likely flushed more prey for egrets. Interactions occurred almost exclusively in the driest months, which suggested that prey were more difficult to locate by egrets during this period. The Shoebill inhabits inaccessible swamps and is a rare species with low density throughout its range. It is therefore possible that egret–Shoebill associations, in addition to being infrequent and highly seasonal, may have gone unnoticed. 相似文献
8.
SHUSHI PENG SHILONG PIAO PHILIPPE CIAIS JINGYUN FANG XUHUI WANG 《Global Change Biology》2010,16(11):3004-3013
Snow on land is an important component of the global climate system, but our knowledge about the effects of its changes on vegetation are limited, particularly in temperate regions. In this study, we use daily snow depth data from 279 meteorological stations across China to investigate the distribution of winter snow depth (December–February) from 1980 to 2005 and its impact on vegetation growth, here approximated by satellite‐derived vegetation greenness index observations [Normalized Difference Vegetation Index (NDVI)]. The snow depth trends show strong geographical heterogeneities. An increasing trend (>0.01 cm yr?1) in maximum and mean winter snow depth is found north of 40°N (e.g. Northeast China, Inner Mongolia, and Northwest China). A declining trend (0.01 cm yr?1) is observed south of 40°N, particularly over Central and East China. The effect of changes in snow depth on vegetation growth was examined for several ecosystem types. In deserts, mean winter snow depth is significantly and positively correlated with NDVI during both early (May and June) and mid‐growing seasons (July and August), suggesting that winter snow plays a critical role in regulating desert vegetation growth, most likely through persistent effects on soil moisture. In grasslands, there is also a significant positive correlation between winter snow depth and NDVI in the period May–June. However, in forests, shrublands, and alpine meadow and tundra, no such correlation is found. These ecosystem‐specific responses of vegetation growth to winter snow depth may be due to differences in growing environmental conditions such as temperature and rainfall. 相似文献
9.
Jorge S. Gutiérrez Eldar Rakhimberdiev Theunis Piersma David W. Thieltges 《Journal of Biogeography》2017,44(5):1137-1147
10.
Amy E. M. Johnson T. Scott Sillett David Luther Valentine Herrmann Thomas A. Akre William J. McShea 《The Journal of wildlife management》2019,83(7):1515-1526
Birds that depend on grassland and successional-scrub vegetation communities are experiencing a greater decline than any other avian assemblage in North America. Habitat loss and degradation on breeding and wintering grounds are among the leading causes of these declines. We used public and private lands in northern Virginia, USA, to explore benefits of grassland management and associated field structure on supporting overwintering bird species from 2013 to 2016. Specifically, we used non-metric multidimensional scaling and multispecies occupancy models to compare species richness and habitat associations of grassland-obligate and successional-scrub species during winter in fields comprised of native warm-season grasses (WSG) or non-native cool-season grasses (CSG) that were managed at different times of the year. Results demonstrated positive correlations of grassland-obligate species with decreased vegetation structure and a higher percentage of grass cover, whereas successional-scrub species positively correlated with increased vegetation structure and height and increased percentages of woody stems, forb cover, and bare ground. Fields of WSG supported higher estimated total and target species richness compared to fields of CSG. Estimated species richness was also influenced by management timing, with fields managed during the previous winter or left unmanaged exhibiting higher estimated richness than fields managed in summer or fall. Warm-season grass fields managed in the previous winter or left unmanaged had higher estimated species richness than any other treatment group. This study identifies important winter habitat associations (e.g., vegetation height and field openness) with species abundance and richness and can be used to make inferences about optimal management practices for overwintering avian species in eastern grasslands of North America. © 2019 The Authors. Journal of Wildlife Management Published by Wiley Periodicals, Inc. on behalf of The Wildlife Society. 相似文献
11.
Katerina Sam Bonny Koane Samuel Jeppy Vojtech Novotny 《Journal of Field Ornithology》2014,85(2):152-167
Tropical forests worldwide are being fragmented at a rapid rate, causing a tremendous loss of biodiversity. Determining the impacts of forest disturbance and fragmentation on tropical biotas is therefore a central goal of conservation biology. We focused on bird communities in the interior (>100 m from forest edge) of forest fragments (300, 600, and 1200 ha) in the lowlands of Papua New Guinea and compared them with those in continuous forest. We surveyed bird communities using point counts, mist‐netting, and random walks, and measured habitat and microclimate characteristics at each site. We also surveyed leaf‐dwelling arthropods, butterflies, and ants, and obtained diet samples from birds to examine food availability and food preferences. We recorded significantly fewer bird species per point in the 300‐ha forest fragment than in other study sites. Overall, we recorded 80, 84, and 88 species, respectively, in forest fragments, and 102 in continuous forest. Frugivores (especially large frugivores) and insectivores had lower species richness in forest fragments than continuous forest. Our results did not support the food scarcity hypothesis, that is, the decline of insectivorous birds in forest fragments is caused by an impoverished invertebrate prey base. We also found no significant differences among forest fragments and continuous forest in microclimates of forest interiors. Rather, we found that microhabitats preferred by sensitive birds (i.e., 30% of species with the strongest preferences for continuous forest) were less common in forest fragments (19%–31% of points) than in continuous forest (86% of points). Our results suggest that changes in microhabitats may make forest fragments unsuitable for sensitive species. However, limited dispersal capabilities could also make some species of birds less likely to disperse and occupy fragments. In addition, impoverished food resources, size of the forest fragment, or hunting pressure could contribute to the absence of large frugivorous birds in forest fragments. The forest fragments in our study, preserved as village‐based protected areas, were not large enough to sustain the bird communities found in continuous forest. However, because these fragments still contained numerous bird species, preservation of such areas can be an important component of management strategies to conserve rainforests and birds in Papua New Guinea. 相似文献
12.
ELISABETH B. WEBB LOREN M. SMITH MARK P. VRTISKA THEODORE G. LAGRANGE 《The Journal of wildlife management》2010,74(1):109-119
ABSTRACT Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration. 相似文献
13.
Aim Migration has been suggested to promote large breeding ranges among birds because of the greater mobility of migratory compared with non‐migratory species, but migration has also been suggested to restrict breeding ranges because of evolutionary constraints imposed by the genetically based migration control programme. We aim to investigate the association between migration and the breeding ranges of both land birds and pelagic birds breeding in the Arctic region. Location The Arctic region. Methods Information on breeding and wintering ranges and migratory status of bird species breeding in the arctic tundra biome was compiled from the literature. The association between breeding range, migration distance and primary winter habitat was tested using multivariate generalized linear models and pair‐wise Mann–Whitney U‐tests. Phylogenetic effects were tested for using Mantel’s permutation tests. Results We found different relationships depending on the species’ major winter habitat. Among birds that are pelagic during winter, long‐distance migrants have the largest breeding ranges, while among terrestrial birds, residents and short‐distance migrants have the largest breeding ranges. Breeding ranges of coastal birds of all migratory distance classes are comparatively restricted. Main conclusions As a new explanation for this pattern we suggest that the possibility of colonizing large winter ranges is a key factor for the subsequent expansion of breeding ranges in arctic bird communities and possibly also in bird communities of other regions of the world. Because of the reversal in the relative extent of continents and oceans between the hemispheres, longitudinally wide winter ranges are more likely for long‐distance than short‐distance migrants among pelagic birds, while the reverse holds true for birds that use terrestrial winter habitats. For coastal birds both continents and oceans form barriers restricting colonization of extensive winter quarters and consequently also of extensive breeding ranges, regardless of the distance to the winter quarters. 相似文献
14.
15.
Miquel De Cáceres Lluís Brotons Núria Aquilué Marie‐Josée Fortin 《Journal of Biogeography》2013,40(8):1535-1547
16.
气候变化引起的雪被变化会深刻地影响森林凋落物的分解过程.本研究采用人工控雪处理(对照、增雪、除雪)模拟研究雪被变化对两种温带树种——水曲柳和兴安落叶松凋落叶分解动态的影响. 为期一年的分解试验表明: 不同控雪处理下水曲柳和落叶松的凋落叶年分解率的变化范围分别为51.3%~57.4%和21.7%~31.4%;两者的分解系数(k)变化范围分别为0.048~0.057和0.022~0.030,其中增雪处理的k值最大、除雪处理的k值最小.与对照相比,增雪处理下水曲柳凋落叶50%和95%分解的时间分别缩短了1.1月和4.2月,落叶松则分别缩短了3.7月和15.5月;相反,除雪处理下相应的分解时间分别延长了1.8月和6.4月(水曲柳)及5.0月和21.1月(落叶松).此外,凋落叶分解率与树种、雪深、分解时间、土壤温度等密切相关,但其主要影响因子随分解阶段而异,表现为雪被期主要受土壤温度影响,而随后的无雪期主要受凋落叶初始质量的影响.本研究突显了雪被变化对凋落叶分解有显著的瞬时效应和延迟效应. 相似文献
17.
Aim In this paper, we adopted a large‐scale approach to evaluate the effect of regional richness of forest birds on the number of bird species retained by forest fragments in several localities across Europe. Location We studied bird assemblages in fourteen forest archipelagos embedded in agricultural matrices from southern Norway to central Spain. Tree composition varied from oak and beech forests of the northern localities to oak and pine xerophitic woodlands of the southern ones. The number of fragments in each forest archipelago ranged from eighteen to 211. Methods We used the Gleason equation (s = a + z log A; where s and A are, respectively, the species richness and size of forest fragments and z the rate of species loss) to estimate the species richness for 1‐ and 15‐ha fragments in each archipelago. The regional richness of forest birds was estimated by modelling the geographical distribution of species richness in the European atlas of breeding birds. Results The latitudinal distribution of regional richness displayed a convex form, with the highest values being in central Europe. Along this gradient, the number of species retained by fragments and the rate of species loss was positively related to regional richness. In addition, the percentage of the regional pool of species sampled by fragments decreased in the southern localities. Main conclusions Relationships between regional richness of forest birds and richness in fragments seem to explain why fragments in central Europe shelter more species than their southern counterparts. The decreased ability of southern forest fragments to sample the regional richness of forest birds, could be explained as an effect of the low abundance of many species in the Mediterranean, which could depress their ability to prevent extinction in fragments by a rescue effect. Alternatively, high beta diversity in the Mediterranean could produce undersampling by fragments of the regional pool of species. These regional differences in the response of bird assemblages to forest fragmentation are used to discuss the usefulness of large‐scale, biogeographical approaches in the design of conservation guidelines. 相似文献
18.
We compared the relative contribution of blackwater inundation forest (igapó) and unflooded (terra firme) forest for regional bird species diversity in the lower Rio Negro region. For analyses of habitat preference we used mist-net samples and an unpublished bird species check-list. The igapó forest had lower bird species diversity than the terra firme forest. However, some 14% of the forest bird species in the region are restricted to igapó forest. Species composition was found to be distinct between the understories of the two forest types. Common forest bird guilds in the Neotropics such as ant-following birds avoid igapó forest. The differential habitat selection among birds in the inundated and unflooded forest is likely to result from vegetation structure and biological interactions such as aggressive behaviour. Since the inundated forest has a typical biota, conservation efforts needs to be directed to protect these habitats. Unfortunately, inundation forests are threatened by several human actions, especially dam construction. The extent of protected areas in the Brazilian Amazon is insufficient for the adequate protection of the inundated habitats, because it includes only 3% of the total area. 相似文献
19.
20.
研究区属于江西武夷山国家级自然保护区范围,为中国亚热带东部最高的山地,森林原生性保存较为完好。2004—2012年,在研究区海拔300—2160 m范围,布设了穿越所有代表性生境的1条主样线和6条辅助样线,共记录有森林繁殖鸟188种,占中国东部丘陵平原亚区繁殖鸟种数的71.76%。在这些繁殖鸟中,物种数在10种及以上的优势科有鸫科(Turdidae)13种、鹟科(Muscicapidae)10种、画眉科(Timaliidae)21种、莺科(Sylviidae)22种,占研究区森林繁殖鸟种数的35.1%、雀形目(PASSERIFORMES)的51.2%。将研究区按海拔高度、植被类型和人类干扰程度分为4类生境进行分析,结果显示:物种数以次生林恢复区最多(138种)原生性森林区(127种)农林营作干扰区(119种)中山灌丛草甸区(51种),其中中山灌丛草甸区由于生境条件因素各项指标数值均最小,其余3类生境分区,无论是总鸟种数、雀形目鸟种数,还是优势科鸟种数,均支持中间膨胀效应(Mid-domain effect)。G-F指数由低海拔向高海拔依次降低,即:农林营作干扰区(DG-F=0.775)次生林恢复区(DG-F=0.772)原生性森林区(DG-F=0.760)中山灌丛草甸区(DG-F=0.603);雀形目鸟种G-F指数分析,原生性森林区(DG-F=0.650)则略大于次生林恢复区(DG-F=0.633),提示顶级植物群落更大的森林内部空间和多样的内部层次结构,对雀形目鸟种多样性具有积极意义。分析显示次生林恢复区与原生性森林区相似性系数最高,表明经过30a左右自然演替恢复的次生林,对于森林繁殖鸟来说其生态功能已接近顶级群落,而农林营作干扰区和中山灌丛草甸区相似性系数最低。同时,研究区鸡形目(GALLIFORMES)鸟类生态位分异表现最为典型。 相似文献