首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Aim In this paper, we adopted a large‐scale approach to evaluate the effect of regional richness of forest birds on the number of bird species retained by forest fragments in several localities across Europe. Location We studied bird assemblages in fourteen forest archipelagos embedded in agricultural matrices from southern Norway to central Spain. Tree composition varied from oak and beech forests of the northern localities to oak and pine xerophitic woodlands of the southern ones. The number of fragments in each forest archipelago ranged from eighteen to 211. Methods We used the Gleason equation (s = a + z log A; where s and A are, respectively, the species richness and size of forest fragments and z the rate of species loss) to estimate the species richness for 1‐ and 15‐ha fragments in each archipelago. The regional richness of forest birds was estimated by modelling the geographical distribution of species richness in the European atlas of breeding birds. Results The latitudinal distribution of regional richness displayed a convex form, with the highest values being in central Europe. Along this gradient, the number of species retained by fragments and the rate of species loss was positively related to regional richness. In addition, the percentage of the regional pool of species sampled by fragments decreased in the southern localities. Main conclusions Relationships between regional richness of forest birds and richness in fragments seem to explain why fragments in central Europe shelter more species than their southern counterparts. The decreased ability of southern forest fragments to sample the regional richness of forest birds, could be explained as an effect of the low abundance of many species in the Mediterranean, which could depress their ability to prevent extinction in fragments by a rescue effect. Alternatively, high beta diversity in the Mediterranean could produce undersampling by fragments of the regional pool of species. These regional differences in the response of bird assemblages to forest fragmentation are used to discuss the usefulness of large‐scale, biogeographical approaches in the design of conservation guidelines.  相似文献   

4.
Pattern in the distribution of Britain's upland breeding birds   总被引:1,自引:0,他引:1  
We use a quantitative approach to identify fifty-eight species of birds which breed in association with the British uplands. Similarities and differences between this list of 'upland birds' and previous more subjective lists are discussed. We then study pattern in the distribution of these species throughout the uplands. A high degree of regionalization is found, and interpreted in terms of the habitat composition of different regions, and known bird–habitat associations. Different regions differ widely, not only with respect to their bird species composition, but also in the number and conservation importance of their upland bird assemblages. In particular, we contrast the uplands of Wales and England with those of Scotland. The Welsh and English uplands contain a relatively low number of upland bird assemblages and are divided into a few large regions, each dominated by a single assemblage type. In comparison, the Scottish uplands are more varied, both in terms of the total number of assemblages, and the range of assemblages found at a small scale. The study provides a means of viewing any upland region within the national context.  相似文献   

5.
6.
江西武夷山-黄岗山西北坡森林繁殖鸟类多样性调查   总被引:5,自引:0,他引:5  
程松林  毛夷仙  袁荣斌 《生态学报》2014,34(23):6963-6974
研究区属于江西武夷山国家级自然保护区范围,为中国亚热带东部最高的山地,森林原生性保存较为完好。2004—2012年,在研究区海拔300—2160 m范围,布设了穿越所有代表性生境的1条主样线和6条辅助样线,共记录有森林繁殖鸟188种,占中国东部丘陵平原亚区繁殖鸟种数的71.76%。在这些繁殖鸟中,物种数在10种及以上的优势科有鸫科(Turdidae)13种、鹟科(Muscicapidae)10种、画眉科(Timaliidae)21种、莺科(Sylviidae)22种,占研究区森林繁殖鸟种数的35.1%、雀形目(PASSERIFORMES)的51.2%。将研究区按海拔高度、植被类型和人类干扰程度分为4类生境进行分析,结果显示:物种数以次生林恢复区最多(138种)原生性森林区(127种)农林营作干扰区(119种)中山灌丛草甸区(51种),其中中山灌丛草甸区由于生境条件因素各项指标数值均最小,其余3类生境分区,无论是总鸟种数、雀形目鸟种数,还是优势科鸟种数,均支持中间膨胀效应(Mid-domain effect)。G-F指数由低海拔向高海拔依次降低,即:农林营作干扰区(DG-F=0.775)次生林恢复区(DG-F=0.772)原生性森林区(DG-F=0.760)中山灌丛草甸区(DG-F=0.603);雀形目鸟种G-F指数分析,原生性森林区(DG-F=0.650)则略大于次生林恢复区(DG-F=0.633),提示顶级植物群落更大的森林内部空间和多样的内部层次结构,对雀形目鸟种多样性具有积极意义。分析显示次生林恢复区与原生性森林区相似性系数最高,表明经过30a左右自然演替恢复的次生林,对于森林繁殖鸟来说其生态功能已接近顶级群落,而农林营作干扰区和中山灌丛草甸区相似性系数最低。同时,研究区鸡形目(GALLIFORMES)鸟类生态位分异表现最为典型。  相似文献   

7.
Tropical forests worldwide are being fragmented at a rapid rate, causing a tremendous loss of biodiversity. Determining the impacts of forest disturbance and fragmentation on tropical biotas is therefore a central goal of conservation biology. We focused on bird communities in the interior (>100 m from forest edge) of forest fragments (300, 600, and 1200 ha) in the lowlands of Papua New Guinea and compared them with those in continuous forest. We surveyed bird communities using point counts, mist‐netting, and random walks, and measured habitat and microclimate characteristics at each site. We also surveyed leaf‐dwelling arthropods, butterflies, and ants, and obtained diet samples from birds to examine food availability and food preferences. We recorded significantly fewer bird species per point in the 300‐ha forest fragment than in other study sites. Overall, we recorded 80, 84, and 88 species, respectively, in forest fragments, and 102 in continuous forest. Frugivores (especially large frugivores) and insectivores had lower species richness in forest fragments than continuous forest. Our results did not support the food scarcity hypothesis, that is, the decline of insectivorous birds in forest fragments is caused by an impoverished invertebrate prey base. We also found no significant differences among forest fragments and continuous forest in microclimates of forest interiors. Rather, we found that microhabitats preferred by sensitive birds (i.e., 30% of species with the strongest preferences for continuous forest) were less common in forest fragments (19%–31% of points) than in continuous forest (86% of points). Our results suggest that changes in microhabitats may make forest fragments unsuitable for sensitive species. However, limited dispersal capabilities could also make some species of birds less likely to disperse and occupy fragments. In addition, impoverished food resources, size of the forest fragment, or hunting pressure could contribute to the absence of large frugivorous birds in forest fragments. The forest fragments in our study, preserved as village‐based protected areas, were not large enough to sustain the bird communities found in continuous forest. However, because these fragments still contained numerous bird species, preservation of such areas can be an important component of management strategies to conserve rainforests and birds in Papua New Guinea.  相似文献   

8.
Aim An area’s ability to support species may be dependent not only on the total amount of available energy it contains but also on energy density (i.e. available energy per unit area). Acknowledging these two aspects of energy availability may increase mechanistic understanding of how increased energy availability results in increased species richness. We studied the relationship between energy density, its variation in space and boreal forest bird species richness and investigated two possible mechanisms: (1) metabolic constraints of organisms, and (2) increased resource availability for specialists. Location Protected areas in Finland’s boreal forest. Methods We tested whether bird species richness was best determined by total energy availability in an area or by energy density and its variation within the area, before and after including bird abundance in the models. We evaluated two main explanatory variables: tree growth reflecting the rate of energy production and tree volume as a measure of biomass. In addition, we modelled individual species’ responses to energy density and its variation, and evaluated the prediction of the metabolic constraints hypothesis that small species are limited by energy density whereas large species are limited by total energy availability in the area. Results Energy density and its variation were good predictors of species richness: together with abundance they explained 84% of variation in species richness (compared with 74% for abundance alone). Pure metabolic constraints were unlikely to explain this relationship. Instead, the mechanism probably involved increased habitat heterogeneity benefiting specialist species. Total energy availability was also an important factor determining species richness but its effect was indirect via abundance. Main conclusions Our results corroborate the importance of energy availability as a driver of species richness in forest bird communities, and they indicate that energy density and its variation in the landscape strongly influence species richness even after accounting for abundance.  相似文献   

9.
栖息地演变与人为干扰对升金湖越冬水鸟的影响   总被引:6,自引:0,他引:6  
2002年10月—2003年4月,选择安徽升金湖6个不同干扰程度和栖息地质量的固定监测点,研究人为干扰对升金湖越冬水鸟分布格局的影响;同时结合前期调查数据,研究栖息地演变对升金湖越冬水鸟的影响.结果表明:同一越冬期不同监测点水鸟种类和数量与栖息地质量无显著相关关系,但水鸟数量与栖息地干扰程度显著负相关;不同年份升金湖越冬水鸟种类和数量与栖息地质量显著相关.升金湖越冬水鸟存在的主要威胁包括栖息地丧失、人为活动干扰以及生物杀灭剂的影响.提出了一些保护升金湖越冬水鸟的建议.  相似文献   

10.
1. Patterns of distribution of breeding austral migrant tyrant-flycatchers in temperate South America were quantified and analysed in conjunction with a variety of ecological, biogeographical and climatic variables.
2. The pattern of proportion of migratory to total breeding tyrannids was most strongly associated with latitude and two temperature variables, mean temperature of the coldest month and relative annual range of temperature.
3. The strong associations of latitude and temperature with percentage of migrants are consistent with the results of most similar investigations of the breeding distributions of migratory birds, both for migrants breeding in North America and in Europe, but contradict the hypothesis that habitat complexity plays a major role in structuring the proportion of migrants in communities of breeding birds.
4. The consistency of results among studies of migrants on different continents suggests that temperature and latitude, presumably a surrogate for one or more climatic variables, are globally significant factors in the breeding distributions of migratory birds.
5. The results for austral migrant flycatchers are consistent with the hypothesis that the prevalence of migration at any particular locality is ultimately dependent on the abundance of resources in the breeding season and the severity of the winter season, or on the difference in resource levels between summer and winter.  相似文献   

11.
12.
Aim To address the relative role of adjacent land use, distance to forest edge, forest size and their interactions on understorey plant species richness and composition in perimetropolitan forests. Location The metropolitan area of Barcelona, north‐eastern Spain. Methods Twenty sampling sites were distributed in two forest size‐categories: small forest patches (8–90 ha) and large forest areas (> 18,000 ha). For each forest‐size category, five sites were placed adjacent to crops and five sites adjacent to urban areas. Vascular plant species were recorded and human frequentation was scored visually in 210 10 × 10 m plots placed at 10, 50 and 100 m from the forest edge, and additionally at 500 m in large forest areas. Plant species were grouped according to their ecology and rarity categories. A nonmetric multidimensional scaling (NMS) ordination was carried out to detect patterns of variation in species assemblage, and to explore the relationships between these patterns and the richness of the species groups and the studied factors. Factorial anovas were used to test the significance of the studied factors on the richness of species groups. Relationships between human frequentation and the studied variables were assessed through contingency tables. Results Forest‐size category was the main factor affecting synanthropic species (i.e. those thriving in man‐made or man‐disturbed habitats). Synanthropic species richness decreased with increasing distance from the forest edge and, when forests were adjacent to crops, it was higher in small forest patches than in large forest areas. Richness of rare forest species was lower in small forest patches than in large forest areas when forests were adjacent to urban areas. Richness of common forest species and of all forest species together were higher close to the forest edge than far from it when forests were adjacent to urban areas. Forests adjacent to urban areas were more likely to experience high human frequentation, particularly in those plots nearest to the forest edge. Main conclusions Forest‐size category and adjacent land use were the most important factors determining species richness and composition. The preservation of large forests adjacent to crops in peri‐urban areas is recommended, because they are less frequented by humans, are better buffered against the percolation of nonforest species and could favour the persistence of rare forest species.  相似文献   

13.
14.
15.
16.
17.
Aim  To consider the role of local colonization and extinction rates in explaining the generation and maintenance of species richness gradients at the regional scale.
Location  A Mediterranean biome (oak forests, deciduous forests, shrublands, pinewoods, firwoods, alpine heathlands, crops) in Catalonia, Spain.
Methods  We analysed the relative importance of direct and indirect effects of community size in explaining species richness gradients. Direct sampling effects of community size on species richness are predicted by Hubbell's neutral theory of biodiversity and biogeography. The greater the number of individuals in a locality, the greater the number of species expected by random direct sampling effects. Indirect effects are predicted by the abundance–extinction hypothesis, which states that in more productive sites increased population densities and reduced extinction rates may lead to high species richness. The study system was an altitudinal gradient of forest bird species richness.
Results  We found significant support for the existence of both direct and indirect effects of community size in species richness. Thus, both the neutral and the abundance–extinction hypotheses were supported for the altitudinal species richness gradient of forest birds in Catalonia. However, these mechanisms seem to drive variation in species richness only in low-productivity areas; in high-productivity areas, species richness was uncorrelated with community size and productivity measures.
Main conclusions  Our results support the existence of a geographical mosaic of community-based processes behind species richness gradients, with contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity.  相似文献   

18.
Abstract. Relative abundance distributions (RADs) are an important feature of community structure, but little is known of the factors affecting which type of RAD is observed in a particular community. We examined the influences of species richness and of spatial scale on the RAD of plant communities. The effect of species richness was examined by analysing simulated communities generated under the Broken stick model, the Sequential breakage model, and a randomized version of Niche pre-emption model. In all cases, when there were few species in the community the data only occasionally gave the best fit to the model that was used to generate it. With 40–65 species, a best fit was obtained for the correct model in about 75 % of cases, almost irrespective of the model. Effects of spatial scale were examined in data from four dune slacks and from two semi-arid grasslands, by analysing biomass values at a range of sample sizes. The model that best fitted the whole sample differed between the four slacks and between the slacks and the semi-arid grasslands. The change in which model of RAD fitted best, as sample size was reduced, varied between sites and between habitat types. At the smallest sample sizes, the Zipf-Mandelbrot model often fitted, and in the slack sites the Broken stick also, though neither fitted (in the vegetation examined) at larger spatial scales. It is concluded the RAD is affected by species richness and by spatial scale, in ways that currently do not enable simple prediction. RADs can theoretically give information on the processes such as resource partitioning, immigration and competition that have structured the community, but they are a blunt tool for this purpose.  相似文献   

19.
Aim We examined relationships between breeding bird distribution of 10 forest songbirds in the Great Lakes Basin, large‐scale climate and the distribution of land cover types as estimated by advanced very high resolution radiometer (AVHRR) and multi‐spectral scanner (MSS) land cover classifications. Our objective was to examine the ability of regional climate, AVHRR (1 km resolution) land cover and MSS (200 m resolution) land cover to predict the distribution of breeding forest birds at the scale of the Great Lakes Basin and at the resolution of Breeding Bird Atlas data (5–10 km2). Specifically we addressed the following questions. (1) How well do AVHRR or MSS classifications capture the variation in distribution of bird species? (2) Is one land cover classification more useful than the other for predicting distribution? (3) How do models based on climate compare with models based on land cover? (4) Can the combination of both climate and land cover improve the predictive ability of these models. Location Modelling was conducted over the area of the Great Lakes Basin including parts of Ontario, Canada and parts of Illinois, Indiana, Michigan, New York, Ohio, Pennsylvania Wisconsin, and Minnesota, USA. Methods We conducted single variable logistic regression with the forest classes of AVHRR and MSS land cover using evidence of breeding as the response variable. We conducted multiple logistic regression with stepwise selection to select models from five sets of explanatory variables (AVHRR, MSS, climate, AVHRR + climate, MSS + climate). Results Generally, species were related to both AVHRR and MSS land cover types in the direction expected based on the known local habitat use of the species. Neither land cover classification appeared to produce consistently more intuitive results. Good models were generated using each of the explanatory data sets examined here. And at least one but usually all five variable sets produced acceptable or excellent models for each species. Main conclusions Both climate and large scale land cover were effective predictors of the distribution of the 10 forest bird species examined here. Models generated from these data had good classification accuracy of independent validation data. Good models were produced from all explanatory data sets or combinations suggesting that the distribution of climate, AVHRR land cover, and MSS land cover all captured similar variance in the distribution of the birds. It is difficult to separate the effects of climate and vegetation on the species’ distributions at this scale.  相似文献   

20.
The role of climate in determining range margins is often studied using species distribution models (SDMs), which are easily applied but have well-known limitations, e.g. due to their correlative nature and colonization and extinction time lags. Transplant experiments can give more direct information on environmental effects, but often cover small spatial and temporal scales. We simultaneously applied a SDM using high-resolution spatial predictors and an integral projection (demographic) model based on a transplant experiment at 58 sites to examine the effects of microclimate, light and soil conditions on the distribution and performance of a forest herb, Lathyrus vernus, at its cold range margin in central Sweden. In the SDM, occurrences were strongly associated with warmer climates. In contrast, only weak effects of climate were detected in the transplant experiment, whereas effects of soil conditions and light dominated. The higher contribution of climate in the SDM is likely a result from its correlation with soil quality, forest type and potentially historic land use, which were unaccounted for in the model. Predicted habitat suitability and population growth rate, yielded by the two approaches, were not correlated across the transplant sites. We argue that the ranking of site habitat suitability is probably more reliable in the transplant experiment than in the SDM because predictors in the former better describe understory conditions, but that ranking might vary among years, e.g. due to differences in climate. Our results suggest that L. vernus is limited by soil and light rather than directly by climate at its northern range edge, where conifers dominate forests and create suboptimal conditions of soil and canopy-penetrating light. A general implication of our study is that to better understand how climate change influences range dynamics, we should not only strive to improve existing approaches but also to use multiple approaches in concert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号