首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coastal forested wetlands provide important ecosystem services such as carbon sequestration, nutrient retention, and flood protection, but they are also important sources of greenhouse gas emissions. Human appropriation of surface water and extensive ditching and draining of coastal plain landscapes are interacting with rising sea levels to increase the frequency and magnitude of saltwater incursion into formerly freshwater coastal wetlands. Both hydrologic change and saltwater incursion are expected to alter carbon and nutrient cycling in coastal forested wetlands. We performed a full factorial experiment in which we exposed intact soil cores from a coastal forested wetland to experimental marine salt treatments and two hydrologic treatments. We measured the resulting treatment effects on the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) over 112 days. Salinity effects were compared across four treatments to isolate the effects of increases in ionic strength from the impact of adding a terminal electron acceptor (SO42?). We compared control treatments (DI addition), to artificial saltwater (ASW, target salinity of 5 parts per thousand) and to two treatments that added sulfate alone (SO42?, at the concentration found in 5 ppt saltwater) and saltwater with the sulfate removed (ASW-SO42?, with the 5 ppt target salinity maintained by adding additional NaCl). We found that all salt treatments suppressed CO2 production, in both drought and flooded treatments. Contrary to our expectations, CH4 fluxes from our flooded cores increased between 300 and 1200% relative to controls in the ASW and ASW-SO42? treatments respectively. In the drought treatments, we saw virtually no CH4 release from any core, while artificial seawater with sulfate increased N2O fluxes by 160% above DI control. In contrast, salt and sulfate decreased N2O fluxes by 72% in our flooded treatments. Our results indicate that salinization of forested wetlands of the coastal plain may have important climate feedbacks resulting from enhanced greenhouse gas emissions and that the magnitude and direction of these emissions are contingent upon wetland hydrology.  相似文献   

2.
L. Perry  K. Williams 《Oecologia》1996,105(4):428-434
Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt water may play a role in the mortality of cabbage palm seedlings in the field. The salinity range in which plant performance plummeted in the greenhouse was consistent with the salinity difference found between our two coastal study sites, suggesting that variation in tidal water salinity along the coast plays an important role in the ability of cabbage palm seedlings to withstand tidal flooding.  相似文献   

3.
Salinity changes resulting from storm surge, tides, precipitation, and stormwater run-off are common in coastal wetlands. Soil microbial communities respond quickly to salinity changes, altering the rate of soil organic carbon (SOC) loss and associated biogeochemical processes. This study quantified the impact of salinity-altering pulses on SOC loss, defined as microbial respiration (CO2 flux) at high and low tide, CH4 flux, and dissolved OC (DOC) release, in 3 intertidal wetlands (Jacksonville, FL, USA). Intact soil cores from a freshwater tidal, brackish, and salt marsh were exposed to simulated tides and 3 salinity pulsing events during a 53-day laboratory experiment. Soil and water physio-chemical properties, nutrient release, and microbial indicators were measured. Microbial respiration was the dominate pathway of SOC loss (>97 %). Soil hydraulic conductivity was greater in brackish and salt marshes and was critical to overall soil respiration. High tide CO2 flux was greatest in the freshwater marsh (58 % of SOC loss) and positively correlated with DOC concentration; low tide CO2 flux was greatest in brackish and salt marshes (62 and 70 % of SOC loss, respectively) and correlated with NH4 + and microbial biomass. The freshwater marsh was sensitive to brackish pulses, causing a 112 % increase in respiration, presumably from accelerated sulfate reduction and N-cycling. SOC loss increased in the salt marsh pulsed with freshwater, suggesting freshwater run-off may reduce a salt marsh’s ability to keep-pace with sea level rise. Increased inundation from storm surges could accelerate SOC loss in freshwater marshes, while decreasing SOC loss in brackish and salt marshes.  相似文献   

4.
Methane emissions along a salt marsh salinity gradient   总被引:8,自引:4,他引:4  
The seasonal flux of methane to the atmosphere was measured at three salt marsh sites along a tidal creek. Average soil salinities at the sites ranged from 5 to 17 ppt and fluxes ranged from below detection limits (less than 0.3 mgCH4 m-2 d-1) to 259 mgCH4 m-2 d-1. Annual flux to the atmosphere was 5.6 gCH4 m-2 from the most saline site, 22.4 gCH4 m-2 from the intermediate site, and 18.2 gCH4 m-2 from the freshest of the three sites. Regression of the amount of methane in the soil with flux indicates that changes in this soil methane can account for 64% of the observed variation in flux. Data on pore water distributions of sulfate suggests that the activity of sulfate reducing bacteria is a primary control on methane flux in these transitional environments. Results indicate that relatively high emissions of methane from salt marshes can occur at soil salinities up to approximately 13 ppt. When these data are combined with other tidal marsh studies, annual CH4 flux to the atmosphere shows a strong negative correlation with the long term average soil salinity over a range from essentially fresh water to 26 ppt.  相似文献   

5.
Y. Ye  Y. T. Gu  H. Y. Gao  C. Y. Lu 《Hydrobiologia》2010,641(1):287-300
To investigate the effects of the simultaneous occurrence of salt stress and tidal sea-level rise on mangroves, potted Kandelia candel seedlings were treated under deep flooding (flooded 40 cm above the soil surface for 16 h per day, inundating the entire plant) and shallow flooding (flooded just above the soil surface for 8 h per day) at salinity levels of 5, 15, and 25 ppt over 14 months. Deep flooding enhanced stem elongations at all salinity levels but increased stem biomass only at 5 ppt. Deep flooding increased both leaf production and leaf fall; leaf biomass increased at 5 ppt, but decreased at 15 and 25 ppt. Biomass ratios of root/shoot (R/S) of deep flooding treatments were significantly lower than those of shallow flooding treatments. Under deep flooding, superoxide dismutase (SOD) activities did not show significant change between 5 and 15 ppt, but increased at 25 ppt. With increasing salinity level, peroxidase (POD) activities increased, and the difference between shallow and deep flooding was enhanced. Malonaldehyde (MDA) content significantly decreased at 25 ppt with 40 cm flooding, but was not affected by other treatments. These results demonstrated that the growth and physiological responses of K. candel seedlings under deep flooding conditions varied with salinity level; growth was enhanced at low salinity level but inhibited at high salinity level. It is therefore probable that K. candel will shift from downstream to upstream, where the influence of fresher river water resources will ameliorate the effects of increased salinities that accompany deeper tidal flooding in these mangrove ecosystems.  相似文献   

6.
The impact of salt-water intrusion on microbial organic carbon (C) mineralization in tidal freshwater marsh (TFM) soils was investigated in a year-long laboratory experiment in which intact soils were exposed to a simulated tidal cycle of freshwater or dilute salt-water. Gas fluxes [carbon dioxide (CO2) and methane (CH4)], rates of microbial processes (sulfate reduction and methanogenesis), and porewater and solid phase biogeochemistry were measured throughout the experiment. Flux rates of CO2 and, surprisingly, CH4 increased significantly following salt-water intrusion, and remained elevated relative to freshwater cores for 6 and 5 months, respectively. Following salt-water intrusion, rates of sulfate reduction increased significantly and remained higher than rates in the freshwater controls throughout the experiment. Rates of acetoclastic methanogenesis were higher than rates of hydrogenotrophic methanogenesis, but the rates did not differ by salinity treatment. Soil organic C content decreased significantly in soils experiencing salt-water intrusion. Estimates of total organic C mineralized in freshwater and salt-water amended soils over the 1-year experiment using gas flux measurements (18.2 and 24.9 mol C m?2, respectively) were similar to estimates obtained from microbial rates (37.8 and 56.2 mol C m?2, respectively), and to losses in soil organic C content (0 and 44.1 mol C m?2, respectively). These findings indicate that salt-water intrusion stimulates microbial decomposition, accelerates the loss of organic C from TFM soils, and may put TFMs at risk of permanent inundation.  相似文献   

7.
Questions: 1. Do pine seedlings in estuarine environments display discrete or continuous ranges of physiological tolerance to flooding and salinity? 2. What is the tolerance of Pinus taeda and P. serotina to low salinity and varying hydrologic conditions? 3. Are the assumptions for ecological equilibrium met for modeling plant community migration in response to sea‐level rise? Location: Albemarle Peninsula, North Carolina, USA. Methods: In situ observations were made to quantify natural pine regeneration and grass cover along a salinity stress gradient (from marsh, dying or dead forest, to healthy forest). A full‐factorial greenhouse experiment was set up to investigate mortality and carbon allocation of Pinus taeda and P. serotina to low‐salinity conditions and two hydrology treatments over 6 months. Treatments consisted of freshwater and two salinity levels (4 ppt and 8 ppt) under either permanently flooded or periodically flushed hydrologic conditions. Results: Natural pine regeneration was common (5–12 seedlings per m2) in moderate to well‐drained soils where salinity concentrations were below ca. 3.5 ppt. Pine regeneration was generally absent in flooded soils, and cumulative mortality was 100% for 4 and 8 ppt salinity levels under flooded conditions in the greenhouse study. Under weekly flushing conditions, mortality was not significantly different between 0 and 4 ppt, confirming field observations. Biomass accumulation was higher for P. taeda, but for both pine species, the root to shoot ratio was suppressed under the 8 ppt drained treatment, reflecting increased below‐ground stress. Conclusions: While Pinus taeda and P. serotina are commonly found in estuarine ecosystems, these species display a range of physiological tolerance to low‐salinity conditions. Our results suggest that the rate of forest migration may lag relative to gradual sea‐level rise and concomitant alterations in hydrology and salinity. Current bioclimate or landscape simulation models assume discrete thresholds in the range of plant tolerance to stress, especially in coastal environments, and consequently, they may overestimate the rate, extent, and timing of plant community response to sea‐level rise.  相似文献   

8.

Background and aims

Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants.

Methods

We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2½ growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments.

Results

Soil respiration from mesocosms (22.7–1678.2 mg CO2 m?2 h?1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration.

Conclusions

Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.  相似文献   

9.
Following a summer drought, intact cores of peat soil from two cool temperate peatlands (a rain-fed bog and a groundwater-fed swamp) were exposed experimentally to three different water table levels. The goal was to examine recovery of anaerobic methanogenesis and to evaluate peat soil decomposition to methane (CH4), carbon dioxide (CO2), and dissolved organic carbon (DOC) upon rewetting. Methane emission from soils to the atmosphere was greatest (mean = 80 μmol m?2 s?1) when the entire peat core was rewetted quickly; emission was negligible at low water level and when peat cores were rewetted gradually. Rates of CO2 emission (mean = 1.0 μmol m?2 s?1) were relatively insensitive to water level. Concentrations of CH4 in soil air spaces suggest that onset of methanogenesis induces, but later represses, aerobic oxidation of CH4 above the water table. Concentrations of CO2 suggest production at the soil surface of swamp peat versus at greater depths in bog peat. Portions of peat soil incubated in vitro without oxygen (O2) exhibited a lag before the onset of methanogenesis, and the lag time was less in peat from the cores rewetted quickly. The inhibition of methanogenesis by the selective inhibitor 2-bromoethanesulfonic acid (BES) decreased CO2 production by 20 to 30% but resulted in an increase in concentrations of DOC by 2 to 5 times. The results show that methanogens in peat soils tolerate moderate drought, and recovery varies among different peat types. In peat soils, the inhibition of methanogenesis might enhance DOC availability.  相似文献   

10.
Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (?8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.  相似文献   

11.
鄂尔多斯台地盐沼滩涂湿地土壤细菌群落结构及特征   总被引:2,自引:0,他引:2  
依据植被分类法将鄂尔多斯高原盐沼滩涂湿地划分为肉质耐盐草甸(B)、苔草草甸(C)、禾草草甸(D)和杂类草草甸(E)等4个植被亚型,并以盐沼裸地(A)为对照样地,共计5种盐沼滩涂湿地景观类型。运用高通量测序技术分别研究其土壤细菌群落结构特征、分布情况,以及土壤盐分与土壤细菌之间的关系。结果表明:(1) 5种盐沼滩涂湿地的土壤细菌样品共12213条OTUs,属于45个门,122个纲,365个目,663个科,1375个属,2882个种。(2)变形菌门(26.19%)是盐沼滩涂湿地平均相对丰度最高的门,其次为放线菌门(17.15%),绿弯菌门(12.62%),芽单胞菌门(Gemmatimonadetes,11.23%),拟杆菌门(Bacteroidetes,9.38%),酸杆菌门(Acidobacteria,8.83%)厚壁菌门(Firmicutes,2.96%);芽单胞菌纲中的未定细菌(norank_c_Gemmatimonadetes)是丰度最高的属,平均丰度为5.75%。(3)鄂尔多斯盐沼滩涂湿地自西南向东北,空间位置相近的土壤细菌群落结构具有更大的相似性,随着土壤盐分变化,变形菌门相对...  相似文献   

12.
The relation between decomposition rates and soil salinity and moisture conditions in tidal marshes of the Westerschelde estuary was investigated. In the first part of the study, these soil factors were experimentally manipulated in field plots which were either screened from rainwater or which received an additional weekly supply of freshwater from April to September 1989. These treatments had no clear effect on soil salinities and moisture conditions in a low marsh site. Decomposition rates of Spartina anglica leaves (kept in litterbags in the plots) also did not differ between treatments. In screened plots of a middle marsh site, decomposition rate of Elymus pycnanthus leaves decreased significantly. The effect of the experimental treatments on soil moisture content was variable, but comparatively high soil salinity values (up to 61.3) were consistently found in these plots. It is suggested that the elevated salinity levels induced the decrease in decomposition rate.In the second part of the study, cellulolytic decomposition, measured by loss of tensile strength of strips of cotton test cloth, was investigated in relation to a non-manipulated range of soil salinities (3.8–24.2), by exposing the strips in a series of tidal marshes along the salt gradient of the Westerschelde estuary. No correlation between decomposition rate and soil salinity was found. In addition, no relation was found between decomposition rate and soil water content. The results of both parts of this study lead us to the hypothesis that rate limitation of decomposition in estuarine tidal marsh soils is found at high soil salinities only.  相似文献   

13.
韩广轩 《生态学报》2017,37(24):8170-8178
潮汐盐沼湿地具有高的碳积累速率和低的CH_4排放量,是地球上最密集的碳汇之一。同时,气候变暖和海平面上升可能使得盐沼湿地更迅速的捕获和埋藏大气中的CO_2,因此盐沼湿地的"蓝碳"在减缓气候变化方面扮演着重要角色。潮汐盐沼湿地与其他湿地类型最大的区别和最显著的特征是在周期性潮汐作用下出现淹没和暴露,同时伴随盐分表聚与淋洗的干湿交替,可能是控制盐沼湿地碳交换过程和碳收支平衡的关键因素。但是,当前潮汐水动力过程及其周期性干湿交替对盐沼湿地碳交换关键过程和碳汇形成机制的影响尚不十分清楚。另外,以往相关研究通常孤立地考虑垂直方向上CO_2或CH_4交换或横向方向上的可溶性有机碳(DOC)、可溶性无机碳(DIC)、颗粒有机碳(POC)交换通量对盐沼湿地碳平衡进行评估,显然不够准确。因此,为了精确评估和预测盐沼湿地蓝碳的吸存能力,必须系统研究潮汐不同阶段对盐沼湿地碳交换过程的影响;深入分析潮汐作用下盐沼湿地碳交换的微生物机制;关注潮汐水动力作用对盐沼湿地DOC、DIC和POC产生、释放以及向邻近水体输出的影响;阐明潮汐作用对盐沼湿地碳汇形成机制的影响;纳入潮汐水动力过程作为变量,建立盐沼湿地碳循环模型。  相似文献   

14.
Effects of historic tidal restrictions on salt marsh sediment chemistry   总被引:1,自引:0,他引:1  
The effects of tidalrestrictions by diking on salt marshbiogeochemistry were interpreted by comparingthe hydrology, porewater chemistry and solidphase composition of both seasonally floodedand drained diked marshes with adjacentnatural salt marshes on Cape Cod,Massachusetts. Flooding periods weregreatest in natural and least in drainedmarshes.Differences between the chemistry of thenatural and diked marshes depended upon thedepth of the water table and the supply ofsulfate for anaerobic metabolism. Drainedmarsh sediments were highly acidic (pH <4)with porewaters rich in dissolved Fe; thenatural and diked flooded marshes had pH 6–7.5and Fe orders of magnitude lower. Porewater nutrients, sulfides and alkalinitywere much lower in both flooded and draineddiked marshes than in the natural marsh.Sediments of the drained marsh had subsided90 cm relative to the natural site due toorganic matter decomposition and compaction. However, despite the loss of organic matter,much of the P and N was retained, withNH4 likely protected from nitrificationby low pH and PO4 adsorbed on Fe and Aloxides. Iron, and to a lesser degree sulfur,had also been well retained by the sediment. Despite eight decades of diking, substantialamounts of reduced S, representing potentialacidity, persisted near the top of the watertable.In contrast, the surface of the seasonallyflooded marsh was only 15 cm below thenatural marsh. Accretion since dikingamounted to 25 cm and involved proportionallyless mineral matter.The restoration of seawater flow to bothseasonally flooded and drained diked marsheswill likely extend flooding depth andduration, lower redox, increase cationexchange, and thereby increase NH4,Fe(II), and PO4 mobilization. Increasedporewater nutrients could benefitrecolonizing halophytes but may also degradesurface water quality.  相似文献   

15.
Juncus kraussii Hochst., an important saltmarsh macrophyte, is intensively harvested for many commercially orientated products and current populations are under threat of overexploitation. In saline, intertidal mud banks, this species occurs on higher ground, suggesting that it is adapted to lower salinities and less frequent inundation. The objectives of this study were to determine biomass accumulation, as well as morphological and physiological adaptations of J. kraussii to salinity and waterlogging stresses. Plants collected from the field were subjected to 0.2, 10, 30, 50 and 70% seawater under drained or flooded conditions for three months. Measurements were made of biomass accumulation, CO2 exchange, chlorophyll fluorescence, ion and water relations. Furthermore, seed germination responses to a range of salinities were investigated. Total dry biomass accumulation, as well as the number and height of culms, decreased with increase in salinity under both flooded and drained conditions. Generally, CO2 exchange, stomatal conductance, Photosystem II (PSII) quantum yield and electron transport rate (ETR) through PSII declined with increase in salinity in both the flooded and drained treatments. Predawn and midday ψ in culms decreased with increase in salinity, being lower under drained than flooded conditions. Inorganic solute concentrations in culms increased with increase in salinity, with Na+ and Cl being the predominant ions. Na+/K+ ratios in culms increased significantly with increase in salinity. Proline concentrations in roots and culms, which increased with salinity, were considerably higher under drained than flooded conditions. Germination was best at salinities less than 20% seawater and decreased significantly with further increase in salinity to 110% seawater. Transfer of ungerminated salt-treated seeds to distilled water stimulated germination. This study has demonstrated that J. kraussii is a highly salt and flood tolerant species, being able to grow and survive in salinities up to 70% seawater, under both drained and flooded conditions. Maximal growth occurred at low salinities (<10% seawater) under flooded condition.  相似文献   

16.
Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO2 concentrations and nutrient availability are two key variables that can affect the biological processes that contribute to marsh surface elevation gain. We measured the effects of CO2 concentrations and nutrient availability on surface elevation change in intact mixed‐species blocks of UK salt marsh using six open‐top chambers receiving CO2‐enriched (800 ppm) or ambient (400 ppm) air. We found more rapid surface elevation gain in elevated CO2 conditions: an average increase of 3.4 mm over the growing season relative to ambient CO2. Boosted regression analysis to determine the relative influence of different parameters on elevation change identified that a 10% reduction in microbial activity in elevated CO2‐grown blocks had a positive influence on elevation. The biomass of Puccinellia maritima also had a positive influence on elevation, while other salt marsh species (e.g. Suaeda maritima) had no influence or a negative impact on elevation. Reduced rates of water use by the vegetation in the high CO2 treatment could be contributing to elevation gain, either directly through reduced soil shrinkage or indirectly by decreasing microbial respiration rates due to lower redox levels in the soil. Eutrophication did not influence elevation change in either CO2 treatment despite doubling aboveground biomass. The role of belowground processes (transpiration, root growth and decomposition) in the vertical adjustment of European salt marshes, which are primarily minerogenic in composition, could increase as atmospheric CO2 concentrations rise and should be considered in future wetland models for the region. Elevated CO2 conditions could enhance resilience in vulnerable systems such as those with low mineral sediment supply or where migration upwards within the tidal frame is constrained.  相似文献   

17.
Controls on the Carbon Balance of Tropical Peatlands   总被引:4,自引:0,他引:4  
The carbon balance of tropical peatlands was investigated using measurements of gaseous fluxes of carbon dioxide (CO2) and methane (CH4) at several land-use types, including nondrained forest (NDF), drained forest (DF), drained regenerating forest (DRF) after clear cutting and agricultural land (AL) in Central Kalimantan, Indonesia. Soil greenhouse gas fluxes depended on land-use, water level (WL), microtopography, temperature and vegetation physiology, among which WL was the strongest driver. All sites were CH4 sources on an annual basis and the emissions were higher in sites providing fresh litter deposition and water logged conditions. Soil CO2 flux increased exponentially with soil temperature (T s) even within an amplitude of 4–5°C. In the NDF soil CO2 flux sharply decreased when WLs rose above −0.2 and 0.1 m for hollows and hummocks, respectively. The sharp decrease suggests that the contribution of surface soil respiration (RS) to total soil CO2 flux is large. In the DF soil CO2 flux increased as WL decreased below −0.7 m probably because the fast aerobic decomposition continued in lower peat. Such an increase in CO2 flux at low WLs was also found at the stand level of the DF. Soil CO2 flux showed diurnal variation with a peak in the daytime, which would be caused by the circadian rhythm of root respiration. Among the land-use types, annual soil CO2 flux was the largest in the DRF and the smallest in the AL. Overall, the global warming potential (GWP) of CO2 emissions in these land-use types was much larger than that of CH4 fluxes.  相似文献   

18.
Hydrologic regime is an important control of primary production in wetland ecosystems. I investigated the coupling of flooding, soil salinity and plant production in northern prairie marshes that experience shallow spring flooding. Field experiments compared whitetop (Scolochloa festucacea) marsh that was: (1) nonflooded, (2) flooded during spring with 25 cm water and (3) nonflooded but irrigated with 1 cm water · day–1. Pot culture experiments examined whitetop growth response to salinity treatments. The electrical conductivity of soil interstitial water (ECe) at 15 cm depth was 4 to 8 dS· m–1 lower in flooded marsh compared with nonflooded marsh during 2 years. Whitetop aboveground biomass in flooded marsh (937 g · m–2, year 1; 969 g · m–2, year 2) exceeded that of nonflooded marsh (117 g · m–2 year 1; 475 g · m–2, year 2). Irrigated plots had lower ECe and higher aboveground biomass than nonflooded marsh. In pot culture, ECe of 4.3 dS · m–1 (3 g · L–1 NaCl) reduced total whitetop biomass by 29 to 44% and ECe of 21.6 dS · m–1 (15 g · L–1 NaCl) reduced biomass by more than 75%. Large reductions of ECe and increases of whitetop growth with irrigation indicated that plants responded to changes in soil salinity and not other potential environmental changes caused by inundation. The results suggest that spring flooding controls whitetop production by decreasing soil salinity during spring and by buffering surface soils against large increases of soil salinity after mid-summer water level declines. This mechanism can explain higher marsh plant production under more reducing flooded soil conditions and may be an important link between intermittent flooding and primary production in other wetland ecosystems.  相似文献   

19.
Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide ( \( {\text{ER}}_{{{\text{CO}}_{2} }} \) ) or methane ( \( {\text{ER}}_{{{\text{CH}}_{4} }} \) ), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m?2 year?1) and 210Pb radiodating (336 g C m?2 year?1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m?2 year?1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m?2 year?1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m?2 year?1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm?1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m?2 year?1), making this site a significant GHG source (>2,000 g CO2-eq m?2 year?1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m?2 year?1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.  相似文献   

20.
A study quantifying the physiological threshhold at which Spartina alterniflora plants are able to tolerate the interactive effects of salinity and soil drying was conducted in a climate controlled greenhouse. The experiment consisted of two levels of salinity (3-5 ppt, L and 35-38 ppt, H) as well as four dynamic water levels: flooding (water level maintained 3-5 cm above the soil surface at high tide and 10 cm below the soil surface at low tide for entire study duration, F), 8-day drought (water level maintained at least 20 cm below the soil surface at high tide for 8 days then flooded, 8 days), 16-day drought (water level maintained at least 20 cm below the soil surface at high tide for 16 days then flooded, 16 days), and 24-day drought (water level maintained at least 20 cm below the soil surface at high tide for 24 days then flooded, 24 days). Plant gas exchange and growth responses were measured along with soil conditions of redox potential and water potential. Significant decreases were seen in plant gas exchange and growth in response to increases in salinity and soil drying. Survival was 100% for all flooded treatments while increased salinity combined with soil drying decreased survival to 86% in both low salt/24-day drought plants (LD24) and high salt/16-day drought plants (HD16). The lowest survival rate was seen in the high salt/24-day drought treatment (HD24) at 29%. Therefore, it appears that the critical time for recovery from the combined effects of increased salinity and soil drying may greatly diminish after two weeks from the onset of stress conditions. Consequently, if salinity continues to increase along the MRDP, marshes dominated by S. alterniflora may be more susceptible to short-term drought and likewise large-scale marsh browning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号