共查询到20条相似文献,搜索用时 15 毫秒
1.
Lukáš Vejřík Ivana Matějíčková Tomáš Jůza Jaroslava Frouzová Jaromír Seďa Petr Blabolil Daniel Ricard Mojmír Vašek Jan Kubečka Milan Říha Martin Čech 《Freshwater Biology》2016,61(6):899-913
- Juvenile perch (Perca fluviatilis) often inhabit deep zones of lakes or reservoirs (metalimnion to hypolimnion). Using fry trawling and hydroacoustic measurements, we studied perch distribution to determine if juveniles are using deep hypoxic waters (oxygen concentration ≤3.5 mg L?1) as a refuge from predation.
- We found a heterogeneous depth distribution of perch, with the highest abundance of juveniles in the hypoxic pelagic zones. Distributions were better correlated with oxygen concentration than with depth or temperature.
- Densities of Daphnia spp. were high in the deep hypoxic zones, likely related to avoidance of predation from zooplanktivorous cyprinid fish. Furthermore, Daphnia was found to be the dominant food source for juvenile perch in hypoxic zones and gut fullness was highest in areas with maximum hypoxia. Contrary to earlier studies suggesting a dietary advantage of fish inhabiting cooler hypoxic zones, our study, considering physiological benefits and limitations of juvenile perch digestion, found no support for temperature caused substantial changes in gastric evacuation rates.
- Our finding that high juvenile perch abundance was associated with low oxygen concentration suggests that juvenile perch are mainly using deep hypoxic waters as a refuge from large predators. This behaviour is reinforced by the presence of zooplankton prey in this zone.
2.
Although parasites are expected to affect their host's fitness, quantitative proof for impacts of parasitism on wild populations is hampered by confounding environmental factors, including dietary resource. Herein, we evaluate whether the physiological conditions of European perch (Perca fluviatilis) in three large peri‐alpine lakes (Geneva, Annecy, and Bourget) depend on (a) the nutritional status of the juvenile fish, as revealed by stable isotope and fatty acid compositions, (b) the prevalence of the tapeworm Triaenophorus nodulosus, a parasite transmitted to perch through copepod preys, or (c) interactive effects of both factors. At the scale of lake populations, the deficit in growth and fat storage of juvenile perch during their first summer coincides with a high parasite prevalence and also a low quality of dietary resource. Yet, at the individual level, parasites had no evident effect on the growth of the juvenile perch, while impacts on fat storage appeared only at the highest prevalence of the most infected lake. Fatty acid and stable isotope analyses of fish tissue do not reveal any impact of T. nodulosus on diet, physiology, and feeding behaviour of fish within lakes. Overall, we found a low impact of parasitism on the physiological condition and trophic status of juvenile perch at the end of their first summer. We find instead that juvenile perch growth and fat storage, both factors tied to their winter survival, are under strong nutritional constraints. However, the coinciding nutritional constraints and parasite prevalence of perch juveniles in these three lakes may result from the indirect effect of lake nutrient concentrations, which, as a major control of zooplankton communities, simultaneously regulate both the dietary quality of fish prey and the host–parasite encounter rates. 相似文献
3.
Daniel I. Bolnick Lisa K. Snowberg Philipp E. Hirsch Christian L. Lauber Rob Knight J. Gregory Caporaso Richard Svanbäck 《Ecology letters》2014,17(8):979-987
Vertebrates' diets profoundly influence the composition of symbiotic gut microbial communities. Studies documenting diet‐microbiota associations typically focus on univariate or categorical diet variables. However, in nature individuals often consume diverse combinations of foods. If diet components act independently, each providing distinct microbial colonists or nutrients, we expect a positive relationship between diet diversity and microbial diversity. We tested this prediction within each of two fish species (stickleback and perch), in which individuals vary in their propensity to eat littoral or pelagic invertebrates or mixtures of both prey. Unexpectedly, in most cases individuals with more generalised diets had less diverse microbiota than dietary specialists, in both natural and laboratory populations. This negative association between diet diversity and microbial diversity was small but significant, and most apparent after accounting for complex interactions between sex, size and diet. Our results suggest that multiple diet components can interact non‐additively to influence gut microbial diversity. 相似文献
4.
Katherine A. Zeller Tyler G. Creech Katie L. Millette Rachel S. Crowhurst Robert A. Long Helene H. Wagner Niko Balkenhol Erin L. Landguth 《Ecology and evolution》2016,6(12):4115-4128
Mantel‐based tests have been the primary analytical methods for understanding how landscape features influence observed spatial genetic structure. Simulation studies examining Mantel‐based approaches have highlighted major challenges associated with the use of such tests and fueled debate on when the Mantel test is appropriate for landscape genetics studies. We aim to provide some clarity in this debate using spatially explicit, individual‐based, genetic simulations to examine the effects of the following on the performance of Mantel‐based methods: (1) landscape configuration, (2) spatial genetic nonequilibrium, (3) nonlinear relationships between genetic and cost distances, and (4) correlation among cost distances derived from competing resistance models. Under most conditions, Mantel‐based methods performed poorly. Causal modeling identified the true model only 22% of the time. Using relative support and simple Mantel r values boosted performance to approximately 50%. Across all methods, performance increased when landscapes were more fragmented, spatial genetic equilibrium was reached, and the relationship between cost distance and genetic distance was linearized. Performance depended on cost distance correlations among resistance models rather than cell‐wise resistance correlations. Given these results, we suggest that the use of Mantel tests with linearized relationships is appropriate for discriminating among resistance models that have cost distance correlations <0.85 with each other for causal modeling, or <0.95 for relative support or simple Mantel r. Because most alternative parameterizations of resistance for the same landscape variable will result in highly correlated cost distances, the use of Mantel test‐based methods to fine‐tune resistance values will often not be effective. 相似文献
5.
Aapo Kahilainen Inka Keränen Katja Kuitunen Janne S. Kotiaho K. Emily Knott 《Molecular ecology》2014,23(20):4976-4988
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances in C. splendens suggests genetic drift as an important driver. However, we also observed indication of previous gene flow (revealed by a negative relationship between genetic differentiation and increasing potential connectivity of the landscape). Interestingly, genetic diversity of C. splendens was negatively related to density of C. virgo, suggesting that interspecific interactions influence the SGS of C. splendens. In contrast, genetic differentiation between C. virgo subpopulations was low and only exhibited relationships with latitude, pointing to high gene flow, colonization history and range margin effects as the drivers of SGS. The different SGSs of the two ecologically similar species caution indirect inferences of SGS based on ecologically similar surrogate species. 相似文献
6.
Erin E. Collins John S. Hargrove Thomas A. Delomas Shawn R. Narum 《Ecology and evolution》2020,10(17):9486-9502
Fish migrations are energetically costly, especially when moving between freshwater and saltwater, but are a viable strategy for Pacific salmon and trout (Oncorhynchus spp.) due to the advantageous resources available at various life stages. Anadromous steelhead (O. mykiss) migrate vast distances and exhibit variation for adult migration phenotypes that have a genetic basis at candidate genes known as greb1L and rock1. We examined the distribution of genetic variation at 13 candidate markers spanning greb1L, intergenic, and rock1 regions versus 226 neutral markers for 113 populations (n = 9,471) of steelhead from inland and coastal lineages in the Columbia River. Patterns of population structure with neutral markers reflected genetic similarity by geographic region as demonstrated in previous studies, but candidate markers clustered populations by genetic variation associated with adult migration timing. Mature alleles for late migration had the highest frequency overall in steelhead populations throughout the Columbia River, with only 9 of 113 populations that had a higher frequency of premature alleles for early migration. While a single haplotype block was evident for the coastal lineage, we identified multiple haplotype blocks for the inland lineage. The inland lineage had one haplotype block that corresponded to candidate markers within the greb1L gene and immediately upstream in the intergenic region, and the second block only contained candidate markers from the intergenic region. Haplotype frequencies had similar patterns of geographic distribution as single markers, but there were distinct differences in frequency between the two haplotype blocks for the inland lineage. This may represent multiple recombination events that differed between lineages where phenotypic differences exist between freshwater entry versus arrival timing as indicated by Micheletti et al. (2018a). Redundancy analyses were used to model environmental effects on allelic frequencies of candidate markers, and significant variables were migration distance, temperature, isothermality, and annual precipitation. This study improves our understanding of the spatial distribution of genetic variation underlying adult migration timing in steelhead as well as associated environmental factors and has direct conservation and management implications. 相似文献
7.
L. Laukkanen R. Leimu A. Muola M. Lilley P. Mutikainen 《Journal of evolutionary biology》2013,26(1):141-149
Several ecological and genetic factors affect the diet specialization of insect herbivores. The evolution of specialization may be constrained by lack of genetic variation in herbivore performance on different food‐plant species. By traditional view, trade‐offs, that is, negative genetic correlations between the performance of the herbivores on different food‐plant species favour the evolution of specialization. To investigate whether there is genetic variation or trade‐offs in herbivore performance between different food plants that may influence specialization of the oligophagous seed‐eating herbivore, Lygaeus equestris (Heteroptera), we conducted a feeding trial in laboratory using four food‐plant species. Although L. equestris is specialized on Vincetoxicum hirundinaria (Apocynaceae) to some degree, it occasionally feeds on alternative food‐plant species. We did not find significant negative genetic correlations between mortality, developmental time and adult biomass of L. equestris on the different food‐plant species. We found genetic variation in mortality and developmental time of L. equestris on some of the food plants, but not in adult biomass. Our results suggest that trade‐offs do not affect adaptation and specialization of L. equestris to current and novel food‐plant species, but the lack of genetic variation may restrict food‐plant utilization. As food‐plant specialization of herbivores may have wide‐ranging effects, for instance, on coevolving plant–herbivore interactions and speciation, it is essential to thoroughly understand the factors behind the specialization process. Our findings provide valuable information about the role of genetic factors in food‐plant specialization of this oligophagous herbivore. 相似文献
8.
Kyle A. O'Connell Kevin P. Mulder Jose Maldonado Kathleen L. Currie Dennis M. Ferraro 《Ecology and evolution》2019,9(6):3620-3636
Effective conservation and management of pond‐breeding amphibians depends on the accurate estimation of population structure, demographic parameters, and the influence of landscape features on breeding‐site connectivity. Population‐level studies of pond‐breeding amphibians typically sample larval life stages because they are easily captured and can be sampled nondestructively. These studies often identify high levels of relatedness between individuals from the same pond, which can be exacerbated by sampling the larval stage. Yet, the effect of these related individuals on population genetic studies using genomic data is not yet fully understood. Here, we assess the effect of within‐pond relatedness on population and landscape genetic analyses by focusing on the barred tiger salamanders (Ambystoma mavortium) from the Nebraska Sandhills. Utilizing genome‐wide SNPs generated using a double‐digest RADseq approach, we conducted standard population and landscape genetic analyses using datasets with and without siblings. We found that reduced sample sizes influenced parameter estimates more than the inclusion of siblings, but that within‐pond relatedness led to the inference of spurious population structure when analyses depended on allele frequencies. Our landscape genetic analyses also supported different models across datasets depending on the spatial resolution analyzed. We recommend that future studies not only test for relatedness among larval samples but also remove siblings before conducting population or landscape genetic analyses. We also recommend alternative sampling strategies to reduce sampling siblings before sequencing takes place. Biases introduced by unknowingly including siblings can have significant implications for population and landscape genetic analyses, and in turn, for species conservation strategies and outcomes. 相似文献
9.
Alessandra Iannino Alexander T. L. Vosshage Markus Weitere Patrick Fink 《Freshwater Biology》2019,64(1):37-45
- Benthic algal biomass and distribution in freshwater ecosystems are determined by both nutrient availability (bottom‐up control) and grazing activity by herbivores (top‐down control). Fluctuations in algal nutrient ratios may cause grazers to optimise their food intake through behavioural strategies in order to maintain a constant soft body stoichiometry. Such linkages between nutrient availability and grazing control of algal biomass are as yet poorly understood.
- In this study, we tested whether the stream‐dwelling freshwater gastropod Ancylus fluviatilis would increase its food consumption rate with decreasing periphyton nutrient content, a behaviour known as compensatory feeding. We performed a fully factorial microcosm experiment in which two levels of periphyton phosphorus content (low versus high) were crossed with grazer presence/absence in 12 circular flumes. After 1 week of grazing, food consumption rates were measured by determining the periphyton difference between grazed and ungrazed flumes, and the periphyton biomass variability in every flume was described with a coefficient of variation.
- The food consumption rate of A. fluviatilis was significantly higher in the low phosphorus compared to the high phosphorus treatment, supporting the compensatory feeding hypothesis. As a result, in the presence of grazers, periphyton biomass was significantly lower under low phosphorus availability, while biomass was not affected by nutrient enrichment in the grazer‐free flumes.
- Despite the strong difference in periphyton phosphorus content, A. fluviatilis soft body stoichiometry did not differ between the two nutrient treatments, suggesting strong stoichiometric homeostasis. Furthermore, the distribution of algal biomass was significantly more heterogeneous in the grazed phosphorus‐poor than in the phosphorus‐rich periphyton.
- Our findings suggest that nutrient enrichment may lead to a weaker top‐down control of algal biomass in stream ecosystems and to reduced spatial heterogeneity of periphyton abundance.
10.
Rachael Y. Dudaniec Jessica Worthington Wilmer Jeffrey O. Hanson Matthew Warren Sarah Bell Jonathan R. Rhodes 《Molecular ecology》2016,25(2):470-486
Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model‐based inference. We illustrate the approach empirically using co‐occurring, woodland‐preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground‐dwelling antechinus (Antechinus flavipes). First, we use maximum‐likelihood and a bootstrap procedure to identify the best‐supported isolation‐by‐resistance model out of 56 models defined by linear and non‐linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision‐making, where dealing with uncertainty is critical. 相似文献
11.
Peter A. Novak Peter Bayliss David A. Crook Erica A. Garcia Bradley J. Pusey Michael M. Douglas 《Freshwater Biology》2017,62(5):880-893
- The upstream migration of juvenile amphidromous shrimps has been proposed as a source of marine or estuarine‐derived nutrients into fresh water. Little is known about the size and ecological importance of any such subsidy as there have been few observational or empirical studies on the topic.
- We investigated the upstream migration of the amphidromous shrimp, Macrobrachium spinipes (Palaemonidae) in the Daly River, of tropical northern Australia, to determine migration phenology, estimate migration biomass and determine whether migrating shrimps transport marine‐derived energy and nutrients upstream.
- Field observations over 2 years revealed that juvenile M. spinipes migrate upstream en masse during extended periods of declining discharge over a period of 4–6 weeks during the wet season (March–May). In addition, juvenile atyid shrimps from the genus Caridina were also observed migrating upstream during the same period.
- Fine‐scale sampling using fyke nets over 2 years (2013 and 2014) consistently found discharge to be the strongest predictor of M. spinipes and Caridina spp. biomass, while moon illumination and cloud cover were also important predictors. An estimated 10–20 million shrimps migrated upstream during each wet season, transporting c. 100 kg of carbon and c. 28 kg of nitrogen per year.
- Muscle sulphur stable isotopes (δ34S) and exoskeleton strontium isotope ratios (87Sr/86Sr) were used to establish if marine carbon was transported upstream by the juvenile M. spinipes. Isotope data from migratory M. spinipes were compared to the non‐migratory freshwater Macrobrachium bullatum. No evidence of a marine signature in body tissue or exoskeleton was found using either technique, suggesting very rapid turnover of body tissues
- This study provides key insights into the migration phenology of amphidromous shrimps and, importantly, suggests that migrating M. spinipes do not transport significant amounts of marine‐derived energy and nutrients across the marine/freshwater ecotone.
12.
13.
José Alexandre Felizola Diniz‐Filho Luis Mauricio Bini 《Biological journal of the Linnean Society. Linnean Society of London》2012,107(4):721-736
We could not start this review, literally from the beginning, without expressing our sadness over the passing of Professor Robert R. Sokal. We are sure, nevertheless, that the importance of his scientific achievements will ensure he is long remembered. In this modest tribute to Professor Sokal, we highlight his contributions to the field of population genetics and spatial statistical methods. Specifically, we discuss how two papers, co‐authored with Professor N. L. Oden and published in the pages of the Biological Journal of the Linnean Society in 1978, revolutionized the field of analytical population genetics. In these papers, Sokal and Oden created an elegant framework for inferring evolutionary processes (e.g. isolation‐by‐distance, demic diffusion, selection gradients, genetic drift) from the spatial autocorrelation analysis of genetic variation patterns. We also highlight the pivotal importance of Sokal's work to the development of emerging fields (e.g. landscape and conservation genetics). We hope this virtual issue containing the papers that Professor Sokal published in BJLS, and later, related papers by other researchers, will help to remember his work and maintain his legacy of spatial analysis in genetics, ecology, and evolutionary biology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??. 相似文献
14.
Comparisons of a species' genetic diversity and divergence patterns across large connected populations vs. isolated relict areas provide important data for understanding potential response to global warming, habitat alterations and other perturbations. Aquatic taxa offer ideal case studies for interpreting these patterns, because their dispersal and gene flow often are constrained through narrow connectivity channels that have changed over geological time and/or from contemporary anthropogenic perturbations. Our research objective is to better understand the interplay between historic influences and modern‐day factors (fishery exploitation, stocking supplementation and habitat loss) in shaping population genetic patterns of the yellow perch Perca flavescens (Percidae: Teleostei) across its native North American range. We employ a modified landscape genetics approach, analysing sequences from the entire mitochondrial DNA control region and 15 nuclear DNA microsatellite loci of 664 spawning adults from 24 populations. Results support that perch from primary glacial refugium areas (Missourian, Mississippian and Atlantic) founded contemporary northern populations. Genetic diversity today is highest in southern (never glaciated) populations and also is appreciable in northern areas that were founded from multiple refugia. Divergence is greater among isolated populations, both north and south; the southern Gulf Coast relict populations are the most divergent, reflecting their long history of isolation. Understanding the influence of past and current waterway connections on the genetic structure of yellow perch populations may help us to assess the roles of ongoing climate change and habitat disruptions towards conserving aquatic biodiversity. 相似文献
15.
Luke Ambrose Jeffrey O. Hanson Cynthia Riginos Weixin Xu Sarah Fordyce Robert D. Cooper Nigel W. Beebe 《Ecology and evolution》2019,9(23):13375-13388
New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria‐transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal. 相似文献
16.
S. Jha 《Molecular ecology》2015,24(5):993-1006
Much of the world's terrestrial landscapes are being altered by humans in the form of agriculture, urbanization and pastoral systems, with major implications for biodiversity. Bumble bees are one of the most effective pollinators in both natural and cultivated landscapes, but are often the first to be extirpated in human‐altered habitats. Yet, little is known about the role of natural and human‐altered habitats in promoting or limiting bumble bee gene flow. In this study, I closely examine the genetic structure of the yellow‐faced bumble bee, Bombus vosnesenskii, across the southwestern US coast and find strong evidence that natural oceanic barriers, as well as contemporary human‐altered habitats, limit bee gene flow. Heterozygosity and allelic richness were lower in island populations, while private allelic richness was higher in island populations compared to mainland populations. Genetic differentiation, measured for three indices across the 1000 km study region, was significantly greater than the null expectation (FST = 0.041, F’ST = 0.044 and Dest = 0.155) and correlated with geographic distance. Furthermore, genetic differentiation patterns were most strongly correlated with contemporary (2011) not past (2006, 2001) resistance maps calibrated for high dispersal limitation over oceans, impervious habitat and croplands. Despite the incorporation of dramatic elevation gradients, the analyses reveal that oceans and contemporary human land use, not mountains, are the primary dispersal barriers for B. vosnesenskii gene flow. These findings reinforce the importance of maintaining corridors of suitable habitat across the distribution range of native pollinators to promote their persistence and safeguard their ability to provide essential pollination services. 相似文献
17.
Jessica A. Castillo Clinton W. Epps Anne R. Davis Samuel A. Cushman 《Molecular ecology》2014,23(4):843-856
Climate change is arguably the greatest challenge to conservation of our time. Most vulnerability assessments rely on past and current species distributions to predict future persistence but ignore species' abilities to disperse through landscapes, which may be particularly important in fragmented habitats and crucial for long‐term persistence in changing environments. Landscape genetic approaches explore the interactions between landscape features and gene flow and can clarify how organisms move among suitable habitats, but have suffered from methodological uncertainties. We used a landscape genetic approach to determine how landscape and climate‐related features influence gene flow for American pikas (Ochotona princeps) in Crater Lake National Park. Pikas are heat intolerant and restricted to cool microclimates; thus, range contractions have been predicted as climate changes. We evaluated the correlation between landscape variables and genetic distance using partial Mantel tests in a causal modelling framework, and used spatially explicit simulations to evaluate methods of model optimization including a novel approach based on relative support and reciprocal causal modelling. We found that gene flow was primarily restricted by topographic relief, water and west‐facing aspects, suggesting that physical restrictions related to small body size and mode of locomotion, as well as exposure to relatively high temperatures, limit pika dispersal in this alpine habitat. Our model optimization successfully identified landscape features influencing resistance in the simulated data for this landscape, but underestimated the magnitude of resistance. This is the first landscape genetic study to address the fundamental question of what limits dispersal and gene flow in the American pika. 相似文献
18.
19.
Lucinda P. Lawson 《Molecular ecology》2013,22(7):1947-1960
The Eastern Afromontane Biodiversity Hotspot is known for microendemism and exceptional population genetic structure. The region's landscape heterogeneity is thought to limit gene flow between fragmented populations and create opportunities for regional adaptation, but the processes involved are poorly understood. Using a combination of phylogeographic analyses and circuit theory, I investigate how characteristics of landscape heterogeneity including regional distributions of slope, rivers and streams, habitat and hydrological basins (drainages) impact genetic distance among populations of the endemic spotted reed frog (Hyperolius substriatus), identifying corridors of connectivity as well as barriers to dispersal. Results show that genetic distance among populations is most strongly correlated to regional and local hydrologic structure and the distribution of suitable habitat corridors, not isolation by distance. Contrary to expectations, phylogeographic structure is not coincident with the two montane systems, but instead corresponds to the split between the region's two major hydrological basins (Zambezi and East Central Coastal). This results in a paraphyletic relationship for the Malawian Highlands populations with respect to the Eastern Arc Mountains and implies that the northern Malawian Highlands are the diversity centre for H. substriatus. Although the Malawian Highlands collectively hold the greatest genetic diversity, individual populations have lower diversity than their Eastern Arc counterparts, with an overall pattern of decreasing population diversity from north to south. Through the study of intraspecific differentiation across a mosaic of ecosystem and geographic heterogeneity, we gain insight into the processes of diversification and a broader understanding of the role of landscape in evolution. 相似文献
20.
Chris J. Brauer Peter J. Unmack Steve Smith Louis Bernatchez Luciano B. Beheregaray 《Molecular ecology》2018,27(17):3484-3497
Dispersal and natural selection are key evolutionary processes shaping the distribution of phenotypic and genetic diversity. For species inhabiting complex spatial environments however, it is unclear how the balance between gene flow and selection may be influenced by landscape heterogeneity and environmental variation. Here, we evaluated the effects of dendritic landscape structure and the selective forces of hydroclimatic variation on population genomic parameters for the Murray River rainbowfish, Melanotaenia fluviatilis across the Murray–Darling Basin, Australia. We genotyped 249 rainbowfish at 17,503 high‐quality SNP loci and integrated these with models of network connectivity and high‐resolution environmental data within a riverscape genomics framework. We tested competing models of gene flow before using multivariate genotype–environment association (GEA) analysis to test for signals of adaptive divergence associated with hydroclimatic variation. Patterns of neutral genetic variation were consistent with expectations based on the stream hierarchy model and M. fluviatilis’ moderate dispersal ability. Models incorporating dendritic network structure suggested that landscape heterogeneity is a more important factor determining connectivity and gene flow than waterway distance. Extending these results, we also introduce a novel approach to controlling for the unique effects of dendritic network structure in GEA analyses of populations of aquatic species. We identified 146 candidate loci potentially underlying a polygenic adaptive response to seasonal fluctuations in stream flow and variation in the relative timing of temperature and precipitation extremes. Our findings underscore an emerging predominant role for seasonal variation in hydroclimatic conditions driving local adaptation and are relevant for informing proactive conservation management. 相似文献