首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal distributions are often characterized by many individuals that stay close to their origin and large variation in the distances moved by those that leave. This variation in dispersal distance can strongly influence demographic, ecological, and evolutionary processes. However, a lack of data on the fitness and phenotype of individual dispersers has impeded research on the role of natural selection in maintaining variation in dispersal distance. Six years of spatially explicit capture-mark-recapture data showed that survival increased with dispersal distance in the stream salamander Gyrinophilus porphyriticus. To understand the evolutionary implications of this fitness response, we tested whether variation in dispersal distance has a phenotypic basis. We used photographs of marked individuals to measure head, trunk, and leg morphology. We then tested whether dispersal distances over the six-year study period were predicted by these traits. Dispersal distance was significantly related to leg morphology: individuals with relatively long forelimbs and short hindlimbs dispersed the farthest. These results support the hypothesis that positive fitness consequences maintain phenotypes enabling long-distance dispersal. More broadly, they suggest that natural selection can promote variation in dispersal distance and associated phenotypes, offering an alternative to the view that dispersal distance is driven by stochastic or landscape-specific mechanisms.  相似文献   

2.
Individual variation in breeding dispersal has extensive ecological and evolutionary consequences, but the factors driving individual dispersal behaviour and their fitness consequences remain poorly understood. Our data on dispersal events of a rodent‐specialist predator, the Eurasian kestrel Falco tinnunculus, over 20 years in western Finland offers a unique opportunity to explore the mechanisms underlying breeding dispersal behaviour and its reproductive consequences in a wild bird population. Sex, age, body condition and previous breeding success affected breeding dispersal. Dispersal distances were longer in females than in males as well as longer in yearlings than in older individuals. Body condition was positively correlated to breeding dispersal distances, particularly for females. The lowest dispersal distances were recorded for intermediate brood sizes in the year preceding dispersal. Our results highlight sex‐ and environment‐specific consequences of breeding dispersal on reproductive performance. During increase phases of the three‐year vole cycles, males dispersing further had lower reproductive performance after dispersal, whereas in females, long breeding dispersal distances were associated with increased breeding success under all environmental conditions. These results suggest benefits associated to breeding dispersal in females, potentially related to large spatio‐temporal variation in main food abundance and intensity of intra‐specific competition. Breeding dispersal of males was costly during increasing food abundance, indicating the potential fitness benefits of environmental familiarity in this migratory species. Overall, our results indicate that both individual traits and environmental factors interact to shape breeding dispersal strategies in wide‐ranging predator populations under fluctuating food conditions.  相似文献   

3.
Increased dispersal propensity often evolves on expanding range edges due to the Olympic Village effect, which involves the fastest and fittest finding themselves together in the same place at the same time, mating, and giving rise to like individuals. But what happens after the range's leading edge has passed and the games are over? Although empirical studies indicate that dispersal propensity attenuates following range expansion, hypotheses about the mechanisms driving this attenuation have not been clearly articulated or tested. Here, we used a simple model of the spatiotemporal dynamics of two phenotypes, one fast and the other slow, to propose that dispersal attenuation beyond preexpansion levels is only possible in the presence of trade‐offs between dispersal and life‐history traits. The Olympic Village effect ensures that fast dispersers preempt locations far from the range's previous limits. When trade‐offs are absent, this preemptive spatial advantage has a lasting impact, with highly dispersive individuals attaining equilibrium frequencies that are strictly higher than their introduction frequencies. When trade‐offs are present, dispersal propensity decays rapidly at all locations. Our model's results about the postcolonization trajectory of dispersal evolution are clear and, in principle, should be observable in field studies. We conclude that empirical observations of postcolonization dispersal attenuation offer a novel way to detect the existence of otherwise elusive trade‐offs between dispersal and life‐history traits.  相似文献   

4.
Life‐history theory postulates that evolution is constrained by trade‐offs (i.e., negative genetic correlations) among traits that contribute to fitness. However, in organisms with complex life cycles, trade‐offs may drastically differ between phases, putatively leading to different evolutionary trajectories. Here, we tested this possibility by examining changes in life‐history traits in an aphid species that alternates asexual and sexual reproduction in its life cycle. The quantitative genetics of reproductive and dispersal traits was studied in 23 lineages (genotypes) of the bird cherry‐oat aphid Rhopalosiphum padi, during both the sexual and asexual phases, which were induced experimentally under specific environmental conditions. We found large and significant heritabilities (broad‐sense) for all traits and several negative genetic correlations between traits (trade‐offs), which are related to reproduction (i.e., numbers of the various sexual or asexual morphs) or dispersal (i.e., numbers of winged or wingless morphs). These results suggest that R. padi exhibits lineage specialization both in reproductive and dispersal strategies. In addition, we found important differences in the structure of genetic variance–covariance matrices ( G ) between phases. These differences were due to two large, negative genetic correlations detected during the asexual phase only: (1) between fecundity and age at maturity and (2) between the production of wingless and winged parthenogenetic females. We propose that this differential expression in genetic architecture results from a reallocation scheme during the asexual phase, when sexual morphs are not produced. We also found significant G × E interaction and nonsignificant genetic correlations across phases, indicating that genotypes could respond independently to selection in each phase. Our results reveal a rather unique situation in which the same population and even the same genotypes express different genetic (co)variation under different environmental conditions, driven by optimal resource allocation criteria.  相似文献   

5.
Natural selection drives the evolution of traits to optimize organismal performance, but optimization of one aspect of performance can influence other aspects of performance. Here, we asked how phenotypic variation between locally adapted fish populations affects locomotion and ventilation, testing for functional trade‐offs and trait–performance correlations. Specifically, we investigated two populations of livebearing fish (Poecilia mexicana) that inhabit distinct habitat types (hydrogen‐sulphide‐rich springs and adjacent nonsulphidic streams). For each individual, we quantified different metrics of burst swimming during simulated predator attacks, steady swimming and gill ventilation. Coinciding with predictions, we documented significant population differences in all aspects of performance, with fish from sulphidic habitats exhibiting higher steady swimming performance and higher ventilation capacity, but slower burst swimming. There was a significant functional trade‐off between steady and burst swimming, but not between different aspects of locomotion and ventilation. Although our findings about population differences in locomotion performance largely parallel the results from previous studies, we provide novel insights about how morphological variation might impact ventilation and ultimately oxygen acquisition. Overall, our analyses provided insights into the functional consequences of previously documented phenotypic variation, which will help to disentangle the effects of different sources of selection that may coincide along complex environmental gradients.  相似文献   

6.
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

7.
The monk parakeet (Myiopsitta monachus) is a successful invasive species that does not exhibit life history traits typically associated with colonizing species (e.g., high reproductive rate or long‐distance dispersal capacity). To investigate this apparent paradox, we examined individual and population genetic patterns of microsatellite loci at one native and two invasive sites. More specifically, we aimed at evaluating the role of propagule pressure, sexual monogamy and long‐distance dispersal in monk parakeet invasion success. Our results indicate little loss of genetic variation at invasive sites relative to the native site. We also found strong evidence for sexual monogamy from patterns of relatedness within sites, and no definite cases of extra‐pair paternity in either the native site sample or the examined invasive site. Taken together, these patterns directly and indirectly suggest that high propagule pressure has contributed to monk parakeet invasion success. In addition, we found evidence for frequent long‐distance dispersal at an invasive site (~100 km) that sharply contrasted with previous estimates of smaller dispersal distance made in the native range (~2 km), suggesting long‐range dispersal also contributes to the species’ spread within the United States. Overall, these results add to a growing body of literature pointing to the important role of propagule pressure in determining, and thus predicting, invasion success, especially for species whose life history traits are not typically associated with invasiveness.  相似文献   

8.
The geographic ranges of taxa change in response to environmental conditions. Yet whether rates of range movement (biotic velocities) are phylogenetically conserved is not well known. Phylogenetic conservatism of biotic velocities could reflect similarities among related lineages in climatic tolerances and dispersal‐associated traits. We assess whether late Quaternary biotic velocities were phylogenetically conserved and whether they correlate with climatic tolerances and dispersal‐associated traits. We used phylogenetic regression and nonparametric correlation to evaluate associations between biotic velocities, dispersal‐associated traits, and climatic tolerances for 28 woody plant genera and subgenera in North America. The velocities with which woody plant taxa shifted their core geographic range limits were positively correlated from time step to time step between 16 and 7 ka. The strength of this correlation weakened after 7 ka as the pace of climate change slowed. Dispersal‐associated traits and climatic tolerances were not associated with biotic velocities. Although the biotic velocities of some genera were consistently fast and others consistently slow, biotic velocities were not phylogenetically conserved. The rapid late Quaternary range shifts of plants lacking traits that facilitate frequent long‐distance dispersal has long been noted (i.e., Reid's Paradox). Our results are consistent with this paradox and show that it remains robust when phylogenetic information is taken into account. The lack of association between biotic velocities, dispersal‐associated traits, and climatic tolerances may reflect several, nonmutually exclusive processes, including rare long‐distance dispersal, biotic interactions, and cryptic refugia. Because late Quaternary biotic velocities were decoupled from dispersal‐associated traits, trait data for genera and subgenera cannot be used to predict longer‐term (millennial‐scale) floristic responses to climate change.  相似文献   

9.
Spatial sorting is a process that can contribute to microevolutionary change by assembling phenotypes through space, owing to nonrandom dispersal. Here we first build upon and develop the “neutral” version of the spatial sorting hypothesis by arguing that in systems that are not characterized by repeated range expansions, the evolutionary effects of variation in dispersal capacity and assortative mating might not be independent of but interact with natural selection. In addition to generating assortative mating, variation in dispersal capacity together with spatial and temporal variation in quality of spawning area is likely to influence both reproductive success and survival of spawning migrating individuals, and this will contribute to the evolution of dispersal‐enhancing traits. Next, we use a comparative approach to examine whether differences in spawning migration distance among 18 species of freshwater Anguilla eels have evolved in tandem with two dispersal‐favoring traits. In our analyses, we use information on spawning migration distance, body length, and vertebral number that was obtained from the literature, and a published whole mitochondrial DNA‐based phylogeny. Results from comparative analysis of independent contrasts showed that macroevolutionary shifts in body length throughout the phylogeny have been associated with concomitant shifts in spawning migration. Shifts in migration distance were not associated with shifts in number of vertebrae. These findings are consistent with the hypothesis that spatial sorting has contributed to the evolution of more elongated bodies in species with longer spawning migration distances, or resulted in evolution of longer migration distances in species with larger body size. This novel demonstration is important in that it expands the list of ecological settings and hierarchical levels of biological organization for which the spatial sorting hypothesis seems to have predictive power.  相似文献   

10.
In wing‐polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade‐offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex‐specific trade‐offs can result in sex differences in the frequency of long‐winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing‐dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex‐specific development of long‐winged dispersing morphs (i.e., sex‐specific macroptery). I also used a full‐sib, split‐family breeding design to assess genetic effects on density‐dependent, sex‐specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long‐winged morphs developed more frequently in males than in females when individuals were reared in a high‐density environment. However, the frequency of long‐winged morphs was not biased according to sex when individuals were reared in a low‐density environment. In addition, full‐sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full‐sib males and females at high nymphal density. Thus complex gene‐by‐environment‐by‐sex interactions may explain the density‐specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density‐specific, sex‐biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex‐biased wing development in insects.  相似文献   

11.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.  相似文献   

12.
Costs and benefits of dispersal can vary in space and time, depending on environmental factors and individual state. Plastic, condition‐dependent dispersal strategies, in which individuals rely on external cues such as food abundance to adjust their dispersal distances, are therefore expected to evolve in temporally fluctuating environments. We examined factors affecting breeding dispersal distances in Eurasian kestrels Falco tinnunculus subsisting on multi‐annually and cyclically fluctuating voles as their main food. We attempted to avoid traditional bias in dispersal studies by having large study areas and by taking detection probabilities into account. We observed 320 dispersal events of male and 215 events of female kestrels from our study areas in western Finland during 24 yr. After correcting for distance‐specific detection probability, the estimates of mean dispersal distances increased two‐fold being still clearly higher for females than males. Vole abundance in the spring of settlement was more important in determining average dispersal distances than vole abundance in the previous autumn. At the population level (cross‐sectional model), both males and females dispersed longer distances when the spring abundance of their main food (voles) was low compared to when it was abundant, as predicted by the food depletion hypothesis. At the individual level (longitudinal model), only females responded to the food situation by dispersing more when food abundance was low in the spring of settlement. Females also dispersed longer when vole abundance in the previous autumn had been high. Individual males did not respond to vole abundance, which implies that the population level response in males might have been caused by long‐distance dispersers, which breed in the study area only in good vole years. Our results show that the dispersal distances of kestrels at northern latitudes depend both on individual properties (gender, age, and possibly individual tendency to disperse) and environmental conditions (temporal variation in main food abundance).  相似文献   

13.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

14.
The Plesiosauria is an extinct group of marine reptiles once common in mesozoic seas. Previous work on plesiosaur hunting styles has suggested that short‐necked, large‐headed animals were pursuit predators, whereas long‐necked, small‐headed animals were ambush predators. This study presents new data on the aspect ratios (ARs) of plesiosaur flippers, and interprets these data via comparison with AR in birds, bats and aircraft. Performance trade‐offs implicit in AR variation are well‐understood in the context of aircraft design, and these trade‐offs have direct ecomorphological analogues in birds and bats. Knowledge of these trade‐offs allows interpretation of variation in plesiosaur AR. By analogy, short‐necked taxa were specialized for manoeuvrability and pursuit, whereas long‐necked taxa were generally specialized for efficiency and cruising. These interpretations agree with previous assessments of maximum swimming speed.  相似文献   

15.
The rapid evolution of increased dispersal rate during a population's range expansion provides a unique opportunity to detect trade‐offs between dispersal and reproduction. If a high reproductive rate slows down an individual's dispersal, vanguard individuals should exhibit a lower reproductive output than conspecifics from long‐colonized areas. In the present study, we demonstrate a reduction in reproductive rate in highly dispersive invasion‐front populations of cane toads in tropical Australia.  相似文献   

16.
Wing polymorphism in insects provides a good model system for investigating evolutionary dynamics and population divergence in dispersal‐enhancing traits. This study investigates the contribution of divergent selection, trade‐offs, behaviour and spatial sorting to the evolutionary dynamics of wing polymorphism in the pygmy grasshopper Tetrix subulata (Tetrigidae: Orthoptera). We use data for > 2800 wild‐caught individuals from 13 populations and demonstrate that the incidence of the long‐winged (macropterous) morph is higher and changes faster between years in disturbed habitats characterized by succession than in stable habitats. Common garden and mother‐offspring resemblance studies indicate that variation among populations and families is genetically determined and not influenced to any important degree by developmental plasticity in response to maternal condition, rearing density or individual growth rate. Performance trials show that only the macropterous morph is capable of flight and that propensity to fly differs according to environment. Mark–recapture data reveal no difference in the distance moved between free‐ranging long‐ and short‐winged individuals. There is no consistent difference across populations and years in number of hatchlings produced by long‐ and shorter‐winged females. Our findings suggest that the variable frequency of the long‐winged morph among and within pygmy grasshopper populations may reflect evolutionary modifications driven by spatial sorting due to phenotype‐ and habitat type–dependent emigration and immigration.  相似文献   

17.
Natural populations often show genetic variation in pathogen resistance, which is paradoxal because natural selection is expected to erode genetic variation in fitness‐related traits. Several different factors have been suggested to maintain such variation, but their relative importance is still poorly understood. Here we examined if environmental heterogeneity and genetic trade‐offs could contribute to the maintenance of genetic variation in immune function of a freshwater snail Lymnaea stagnalis. We assessed the immunocompetence of snails originating from different families and maintained in different feeding treatments (ad libitum feeding, no food) by measuring the density of circulating hemocytes, phenoloxidase activity, and antibacterial activity of snail hemolymph. Food limitation reduced snail immune function, and we found significant among‐family variation in hemocyte concentration and PO activity, but not in antibacterial activity. Interestingly, food availability modified the family‐level variation observed in PO activity so that the relative immunocompetence of different snail families changed over environmental conditions (G × E interaction). We found no evidence for genetic trade‐offs between snail growth and immune defense nor among immune traits. Thus, our findings support the idea that environmental heterogeneity may promote maintenance of genetic variation in immune defense, but also suggest that different immune traits might not respond similarly to environmental variation.  相似文献   

18.
1. Evolutionary increases in dispersal‐related traits are frequently documented during range expansions. Investment in flight‐related traits is energetically costly and a trade‐off with fecundity may be expected during range expansion. 2. However, in contrast to wing‐dimorphic species, this trade‐off is not general in wing‐monomorphic species. In the absence of a dispersal‐‐fecundity trade‐off, an increased investment in clutch size at the expansion front is expected possibly at a cost of reduced offspring size. 3. The study evaluated investment in female flight morphology and fecundity‐related traits (clutch size, hatchling size) and potential trade‐offs among these traits in replicated populations of the poleward range‐expanding damselfly Coenagrion scitulum. 4. Females at the expansion front had a higher relative thorax length, indicating an increased investment in flight; this can be explained by spatial sorting of dispersal ability or in situ natural selection at the expansion front. Edge females produced larger hatchlings, however, this pattern was totally driven by the population‐specific thermal larval regimes and could not be attributed to the range expansion per se. By contrast, clutch sizes did not differ between core and edge populations. There was no signal of a dispersal–fecundity trade‐off either for a trade‐off between clutch size and hatchling size. 5. These results indicate that evolution of a higher dispersal ability at the expansion front of C. scitulum does not trade off with investment in fecundity, hence a dispersal–fecundity trade‐off is unlikely to slow down range expansion of this species.  相似文献   

19.
  • Trade‐offs between reproduction, growth and survival arise from limited resource availability in plants. Environmental stress is expected to exacerbate these negative correlations, but no studies have evaluated variation in life‐history trade‐offs throughout species geographic ranges. Here we analyse the costs of growth and reproduction across the latitudinal range of the widespread herb Plantago coronopus in Europe.
  • We monitored the performance of thousands of individuals in 11 populations of P. coronopus, and tested whether the effects of growth and reproduction on a set of vital rates (growth, probability of survival, probability of reproduction and fecundity) varied with local precipitation and soil fertility. To account for variation in internal resources among individuals, we analysed trade‐offs correcting for differences in size.
  • Growth was negatively affected by previous growth and reproduction. We also found costs of growth and reproduction on survival, reproduction probability and fecundity, but only in populations with low soil fertility. Costs also increased with precipitation, possibly due to flooding‐related stress. In contrast, growth was positively correlated with subsequent survival, and there was a positive covariation in reproduction between consecutive years under certain environments, a potential strategy to exploit temporary benign conditions.
  • Overall, we found both negative and positive correlations among vital rates across P. coronopus geographic range. Trade‐offs predominated under stressful conditions, and positive correlations arose particularly between related traits like reproduction investment across years. By analysing multiple and diverse fitness components along stress gradients, we can better understand life‐history evolution across species’ ranges, and their responses to environmental change.
  相似文献   

20.
In many animal species, the expression of sexually selected traits is negatively correlated with traits associated with survival such as immune function, a relationship termed a ‘trade‐off’. But an alternative in which sexually selected traits are positively correlated with survival traits is also widespread. We propose that the nature of intertrait relationships is largely determined by overall energy expenditure, energy availability and trait flexibility, with trade‐offs expected when individuals are subject to energy constraints. We tested this hypothesis in Ephippiger diurnus, a European bushcricket in which males are distinguished by two prominent sexually selected traits, acoustic calls and a large spermatophore transferred to the female at mating, and where immune function may be critical in survival. Ephippiger diurnus are distributed as small, isolated populations that are differentiated genetically and behaviourally. We analysed songs, spermatophores and the immune function in male individuals from eight populations spanning a range of song types. As predicted, we only found trade‐offs in those populations that expended more energy on song and were less flexible in their ability to adjust that expenditure. Ultimately, energy constraints and resulting trade‐offs may limit the evolution of song exaggeration in E. diurnus populations broadcasting long calls comprised of multiple ‘syllables’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号