首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Conservative survival strategy of plants growing in harsh karst habitats is observed from the view of plant functional traits, such as morphological traits and ecological stoichiometry. However, whether the plant communities in karst forests with high species turnover adopt a conservative strategy remains undetermined. This study comprehensively investigated the characteristics of functional traits of dominant plant species in four forests (i.e. Platycarya strobilacea, Quercus fabri, Quercus variabilis, and Pinus massoniana forests) in a trough‐valley karst watershed in Northern Guizhou Province, Southwestern China to explore the adaptation strategy of karst forests at the community level. At the organ and the species levels, traits differed among species, and the leaf and the bark morphological traits and root C:N:P ecological stoichiometry presented large interspecific variations. At the community level, the P. massoniana forest presented the lowest specific root length and dry matter content and tissue density of roots, branch, twig, and bark; the Q. fabri and the Q. variabilis forests displayed low specific leaf area and high dry matter content and tissue density of roots, branch, and twig; and the Platycarya strobilacea forest exhibited high specific leaf area. The P. massoniana forest was subjected to N and P colimitation, and the three other broad‐leaved forests were limited by P supply. The community‐weighted means rather than the arithmetic means of traits were preferential to represent the trait characteristics at the community level. From the view of plant functional traits at the community level, karst forests develop multiple functional traits like low specific leaf area, high dry matter content and tissue density of leaf, roots, branch, and twig, and decrease N and P investments in leaf for a conservative survival strategy to adapt to harsh habitats.  相似文献   

2.
Monodominant patches of forest dominated by Gilbertiodendron dewevrei are commonly found in central African tropical forests, alongside forests with high species diversity. Although these forests are generally found sparsely distributed along rivers, their occurrence is not thought to be (clearly) driven by edaphic conditions but rather by trait combinations of G. dewevrei that aid in achieving monodominance. Functional community structure between these monodominant and mixed forests has, however, not yet been compared. Additionally, little is known about nondominant species in the monodominant forest community. These two topics are addressed in this study. We investigate the functional community structure of 10 one‐hectare plots of monodominant and mixed forests in a central region of the Congo basin, in DR Congo. Thirteen leaf and wood traits are measured, covering 95% (basal area weighted) of all species present in the plots, including leaf nutrient contents, leaf isotopic compositions, specific leaf area, wood density, and vessel anatomy. The trait‐based assessment of G. dewevrei shows an ensemble of traits related to water use and transport that could be favorable for its location near forest rivers. Moreover, indications have been found for N and P limitations in the monodominant forest, possibly related to ectomycorrhizal associations formed with G. dewevrei. Reduced leaf N and P contents are found at the community level for the monodominant forest and for different nondominant groups, as compared to those in the mixed forest. In summary, this work shows that environmental filtering does prevail in the monodominant G. dewevrei forest, leading to lower functional diversity in this forest type, with the dominant species showing beneficial traits related to its common riverine locations and with reduced soil N and P availability found in this environment, both coregulating the tree community assembly.  相似文献   

3.
J. Tong  P. Lei  J. Liu  D. Tian  X. Deng 《Plant biosystems》2016,150(3):412-419
Fine roots ( ≤ 2 mm diameter) are of great value when investigating belowground interactions among different plant species and soil nutrient cycling in forest ecosystems. However, fine root separation and species identification are labor-intensive and time-consuming processes. This study aimed to evaluate the aptitude of near-infrared reflectance spectroscopy (NIRS) in predicting tree species composition in fine root mixed samples. The coniferous species Cunninghamia lanceolata and Pinus massoniana, the deciduous species Alniphyllum fortunei and Liquidambar formosana, and the evergreen broadleaved species Cyclobalanopsis glauca represent the five subtropical tree species selected for this investigation. To obtain near-infrared reflectance spectral data, 20 samples taken in the field and 70 artificially mixed samples of the five species were produced after root samples were oven-dried and ground. Calibration was performed with partial least squares regression and leave-one-out cross-validation. Root mass proportions of the mixed samples showed good predictive capacity for C. lanceolata, P. massoniana, and C. glauca with low root mean square error of prediction ( < 6.82%) and high determination coefficients (R2>0.944). Predictions for A. fortunei and L. formosana were acceptable with R2>0.819. NIRS shows potential in predicting tree species composition with suitable accuracy.  相似文献   

4.
In evergreen broad-leaved forests (EBLFs) in Tiantong National Forest Park, Eastern China, we studied the soil chemistry and plant leaf nutrient concentration along a chronosequence of secondary forest succession. Soil total N, P and leaf N, P concentration of the most abundant plant species increased with forest succession. We further examined leaf lifespan, leaf nutrient characteristics and root–shoot attributes of Pinus massoniana Lamb, the early-successional species, Schima superba Gardn. et Champ, the mid-successional species, and Castanopsis fargesii Franch, the late-successional species. These species showed both intraspecific and interspecific variability along succession. Leaf N concentration of the three dominant species increased while N resorption tended to decrease with succession; leaf P and P resorption didn’t show a consistent trend along forest succession. Compared with the other two species, C. fargesii had the shortest leaf lifespan, largest decay rate and the highest taproot diameter to shoot base diameter ratio while P. massoniana had the highest root–shoot biomass ratio and taproot length to shoot height ratio. Overall, P. massoniana used ‘conservative consumption’ nutrient use strategy in the infertile soil conditions while C. fargesii took up nutrients in the way of ‘resource spending’ when nutrient supply increased. The attributes of S. superba were intermediate between the other two species, which may contribute to its coexistence with other species in a wide range of soil conditions.  相似文献   

5.
黄超  魏虹  吴科君  何欣芮  汪鹏  綦远才  齐代华 《生态学报》2020,40(13):4573-4584
在生物多样性研究中,功能多样性比物种多样性可以更直接地反映生态系统的结构和功能,从而在群落生态学研究中受到越来越多的推崇。马尾松次生纯林是一种亟待改造的森林类型,而在亚热带地区香樟是马尾松林改造的理想树种之一。为了完善马尾松林向香樟林改造的研究,以更好地指导马尾松林改造的实践,本文用空间代替时间的方法,选取马尾松林向香樟林改造过程中4种不同阶段群落为研究对象,对林下灌木层和草本层植物的功能性状及其多样性展开了研究。结果表明:(1)随着森林改造的进行,林下植物的物种数目、功能性状多样性均表现为先上升后下降的变化趋势,其中功能丰富度和功能均匀度在改造前期达到峰值,而物种数目和功能离散度则在改造中期表现最高。(2)比较森林改造的4个时期,林下植物功能多样性的综合表现大致为:改造前期>改造中期>改造后期>未改造时期。(3)森林改造过程中,林下植物"光响应性状"和"繁殖性状"的功能多样性变化趋势相似,但前者比后者对改造的响应更敏感。(4)在森林改造过程中,林下植物的生长、发育和扩散受到林下光照资源的影响,并在长时间的生物竞争中逐渐表现为物种种类、多度和空间分布格局的变化,最终影...  相似文献   

6.
王轶浩  陈展  周建岗  张媛媛 《生态学报》2021,41(13):5184-5194
马尾松对酸沉降危害极其敏感,生产实践中往往通过林分改造来应对酸沉降危害。为掌握酸雨区马尾松纯林改造对土壤酸化环境的影响及科学指导经营管理,采用空间代替时间的方法,对重庆铁山坪林场的马尾松纯林及其阔叶化改造后的香樟林、木荷林、马尾松×香樟混交林和马尾松×木荷混交林土壤养分、酸化特征及团聚体稳定性进行研究。结果表明:(1)除木荷混交林的腐殖质层土壤有机碳和全氮含量显著增加外,其他森林类型总体均减少(P<0.05);香樟林及其混交林的各层土壤全磷和全钾含量均增加,但木荷林及其混交林均减少(P<0.05)。(2)改造为香樟林及其混交林能显著提高土壤pH值、交换性盐基离子含量和盐基饱和度,降低交换性Al3+含量,但改造为木荷林及其混交林则总体对土壤酸化特征影响不明显(P>0.05)。(3)木荷林及其混交林淀积层的水稳性大团聚体含量增加,香樟林及其混交林则是微团聚体含量增加(P<0.05)。(4)改造对各森林类型腐殖质层和木荷林淋溶层及淀积层的土壤团聚体稳定性均无显著影响,但能增强马尾松混交林和香樟林淋溶层或淀积层的土壤团聚体稳定性(P<0.05)。综合来看,改造能改变土壤酸化环境,但各森林类型的影响不同,改造为香樟林或其混交林的改善效果总体好于木荷林或其混交林。因而对酸雨区马尾松纯林改造,还应根据改造树种特性及林分特征,科学确定相应的改造方法,尤其应注重改造林分的全过程抚育经营,以营造良好的林下环境。  相似文献   

7.
陈龙斌  孙昆  张旭  孙洪刚  姜景民 《生态学报》2023,43(19):8035-8046
探究林隙对不同需光性树种早期生长特征和功能性状的影响,对揭示林隙微生境影响次生林内幼苗更新机制具有重要意义。以亚热带次生林中耐荫常绿树种香樟和阳性落叶树种枫香幼苗为试验对象,研究大林隙(D/H介于1.5—2.0)、中林隙(D/H介于1.0—1.5)和小林隙(D/H介于0.5—1.0)对不同需光树种幼苗早期(1—3年生)生长特征和功能性状的影响。结果表明:(1)林隙大小对两种幼苗的生长均有显著影响。其中,中林隙可显著促进香樟2—3年生幼苗的生长,大林隙对枫香1—3年生幼苗的生长均具有显著促进作用。(2)对林隙环境因子与幼苗功能性状的关系进行冗余分析表明,香樟幼苗功能性状的变化与林隙土壤有机质含量、水解性氮含量、酸碱度和有效磷含量密切相关,而枫香幼苗功能性状则主要受林隙土壤酸碱度、有机质含量、水解性氮含量、土壤含水率、冠层透光率和土壤有效磷含量的影响。(3)维持较高的根重比、细根比根长、叶碳氮比和叶碳磷比是幼苗应对林隙环境影响的重要生理生态调节机制。  相似文献   

8.
马尾松人工林乔木层植物凋落物的分解对林地养分平衡和系统物质循环具有重要意义,并可能受不同大小林窗下微环境差异的影响。采用凋落物袋分解法,以马尾松(Pinus massoniana)人工林人为砍伐形成的7个不同大小林窗(G1:100 m~2、G2:225 m~2、G3:400 m~2、C4:625 m~2、G5:900 m~2、G6:1225m~2、G7:1600 m~2)为研究对象,林下(G0)为对照,研究林窗大小对红椿(Toona ciliata)、桢楠(Phoebe zhennan)、香樟(Cinnamomum camphora)和马尾松4种乡土树种凋落叶质量损失及养分释放的影响。结果显示:1)林窗大小(G0-G7)显著影响林窗中心放置的红椿和桢楠凋落叶N和P释放率、香樟凋落叶失重率和N、P、K释放率以及马尾松凋落叶P和K释放率。相对于林下,中小型林窗(G1-G4)的凋落叶失重率和N、P释放率明显较大,而大型林窗(G6-G7)的凋落叶K释放率明显较大。2)林窗内放置位置显著影响红椿、桢楠和马尾松凋落叶的K释放率及香樟凋落叶的P释放率。红椿和桢楠的凋落叶K释放率从林窗中心到边缘显著减少,而马尾松凋落叶K释放率及香樟P释放率从林窗中心到边缘显著增加。3)4种凋落叶类型中红椿凋落叶分解最快,其分解50%和95%所需时间分别为5.29和23.14个月。上述结果表明,林窗大小和林窗内位置对凋落物质量损失及其养分释放具有显著影响,但影响大小及趋势随物种初始基质质量的差异具有明显变化,研究结果为亚热带低山丘陵区马尾松人工低效林的科学经营及管理提高了一定的科学依据。  相似文献   

9.
非结构性碳水化合物(NSC)是凋落物中的易分解组分,在凋落物分解早期快速释放进入土壤并被微生物利用,参与森林土壤生物地球化学循环,因此新鲜凋落物中NSC变化规律是认识森林土壤碳和养分循环的关键之一。选取亚热带常绿阔叶林优势树种米槠(Castanopsis carlesii)和主要造林树种杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)为研究对象,分析其新鲜凋落叶和凋落枝中NSC(可溶性糖和淀粉)含量的动态变化规律。结果表明:凋落物中NSC含量在不同月份表现出明显的时间动态,米槠、杉木和马尾松凋落叶和凋落枝中NSC含量总体上在11—12月呈上升趋势,而在2—6月呈缓慢下降趋势。不同类型的凋落物NSC含量存在显著差异,米槠、杉木和马尾松凋落叶中NSC含量分别为3.03%—3.56%、2.18%—4.37%、3.38%—4.89%,凋落枝中NSC含量分别为1.87%—4.22%、2.88%—4.28%、2.75%—5.27%,米槠和马尾松凋落叶中NSC含量高于凋落枝,而杉木凋落枝中NSC含量高于凋落叶。不同树种凋落物NSC含量差异显著,米槠和...  相似文献   

10.
Studying relationships of plant traits to ecosystem properties is an emerging approach aiming to understand plant's potential effect on ecosystem functioning. In the current study, we explored links between morphological and nutritional leaf traits of two Mediterranean perennial grass species Stipa tenacissima and Lygeum spartum, widely used to prevent desertification process by stabilizing sand dunes. We evaluated also relationships in terms of nitrogen (N) and phosphorus (P) availability between leaves of the investigated species and the corresponding soil. Our results showed that leaf P was very low in comparison with leaf N for the two investigated species. In fact, chlorophyll content, photosynthesis capacity and water conservation during photosynthesis are mainly linked to leaf nitrogen content. Our findings support previous studies showing that at the species levels, morphological and nutritional leaf traits were not related. On the other hand, significant relationships were obtained between soil N and leaf N for S. tenacissima (= 0.011) and L. spartum (= 0.033). However, leaf P was not significantly related to soil P availability for both species. We suggest that any decrease in soil N with the predicted increasing aridity may result in reduction in leaf N and thus in worst dysfunction of some biological processes levels.  相似文献   

11.
闽楠叶片功能性状及表型可塑性对其与杉木混交的响应   总被引:1,自引:0,他引:1  
慢生(闽楠)与速生(杉木)树种混交后,植物是如何改变功能性状来适应环境,在资源获取与分配权衡中来实现共存?是人工林精准提质改造过程中的关键问题,研究了闽楠(Phoebe bournei)与杉木(Cunninghamia lanceolate)混交后,其叶厚(LT)、叶面积(LA)、比叶面积(SLA)、碳含量(LC)、氮含量(LN)、磷含量(LP)和氮磷比(N:P)7项性状指标的差异,探讨其各性状间的变异大小及其相关关系。结果表明:(1)与闽楠纯林相比,混交林闽楠叶片叶面积、比叶面积、叶碳含量、叶氮含量和氮磷比分别增加了16.78%、8.50%、3.12%、21.38%和17.61%,而叶厚与叶磷含量减少了8.80%和25.87%,除叶碳含量差异不显著,其他6项功能性状差异性均达到显著(P<0.05)。(2)混交使闽楠叶LC、LN、LP含量与LT、LA、SLA相关性均发生明显的变化,对其叶厚、叶面积、比叶面积及其交互作用对叶片C:N、C:P、N:P产生一定的影响,表明混交闽楠叶功能性状间的相关关系发生了适应性调整;(3)闽楠主要叶片功能性状的表型可塑性指数分布在0.04-0.33之间,叶厚、叶面积、比叶面积和氮磷比的可塑性变化不敏感(PPI<0.20),叶氮含量、磷含量的可塑性变化较敏感(PPI>0.20),其大小排序为LP > LN > N:P > LA > SLA > LT > LC。以上结果表明了闽楠杉木混交造林模式对闽楠叶形态性状可塑性变化影响较小,没有受到生长空间和光资源的限制,混交是一种较好的造林模式。但闽楠叶氮、磷含量可塑性变化在混交模式中十分敏感,表明生长过程中可能会受到N、P的限制,在培育过程中应注意N肥和P肥的及时补充。这一研究结果,将为今后速生树种与珍贵树种混交造林模式研究提供理论与数据支撑。  相似文献   

12.
为了揭示森林藤本植物在树干表面的分布规律,在鸡公山风景区的枫香(Liquidambar formosana)-马尾松(Pinus massoniana)针阔混交林内,采用样方法和定量调查法分析了以气生根为攀缘策略的络石(Trachelospermum divaricatum)在枫香和马尾松树干表面不同方位分布的数量差异。结果表明,络石在枫香和马尾松树干不同方位的分布状况因树高而异。在枫香树干基径(5 cm)处,西北方位附着的络石数量(6.6 ind./tree)显著高于东北方位(4.6 ind./tree)和东南方位(4.3 ind./tree);在胸径(130 cm)处,西南和东南方位附着的络石数量则显著高于西北方位;络石在基径和胸径处的死亡率均表现为南侧低,北侧高。在马尾松基径处,西北方位的络石具有最高的死亡率(35.1%),导致存活数量最少(4.6 ind./tree);胸径处则东南方位络石最多;并且南侧的络石死亡率低于北侧。因此,络石在攀缘林木不同方位的分布存在显著差异,且与树干高度和林木胸径密切相关,这是树干微环境和藤本植物自身生理特征共同作用的结果。  相似文献   

13.
生态恢复对马尾松叶片化学计量及氮磷转移的影响   总被引:1,自引:0,他引:1  
为了解生态恢复对侵蚀红壤恢复的马尾松林叶片碳氮磷化学计量及氮磷养分转移的影响,在福建省长汀县河田镇典型侵蚀红壤区选取恢复13、30、33a的马尾松林为研究对象,并以未治理侵蚀地(CK1)和次生林(CK2)分别作为恢复前和恢复后的对照,通过测定马尾松叶片的碳、氮、磷含量,计算其计量比,内稳性指数和氮磷转移率,分析了侵蚀红壤生长的马尾松养分限制与养分转移的关系。结果表明:在侵蚀红壤恢复过程中,马尾松1年龄叶片C、N、P含量及1年龄叶片C∶N、C∶P、N∶P变化较小,这与马尾松较高的内稳性有关(N和P内稳性指数分别为7.57和3.89)。所有实验地马尾松1年龄叶片N∶P处于11.0—13.4之间,表明马尾松的生长受N、P共同限制,其中马尾松叶片N转移率显著低于P转移率,这与生态恢复过程中马尾松养分利用效率、生长需求以及土壤养分供应状况有关。1年龄叶片C∶N、C∶P分别与马尾松N、P转移率成负相关关系,当马尾松叶片C∶N、C∶P较低时,表明N、P利用效率较低,叶片衰老时更多的N和P被转移利用;反之,则N、P利用效率较高,转移率低。同时,C∶N、C∶P分别与树高、胸径成显著负相关关系,即马尾松生长对N、P的需求同样会影响化学计量比的变化,从而影响养分转移。虽然侵蚀地生态恢复过程中土壤N、P含量增加,但仍较贫瘠,不足以满足马尾松的生长,马尾松养分转移率较高,因此,为了提高侵蚀地恢复的马尾松林的生产力,建议下一步恢复措施中适当施加N肥和P肥。该研究将侵蚀红壤不同生态恢复年限的马尾松叶片C、N、P化学计量及养分转移结合,有助于全面、系统地揭示生态恢复过程马尾松林的养分循环,对指导侵蚀红壤恢复和提高马尾松生产力具有重要意义。  相似文献   

14.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

15.
Foliar traits are often interpreted to reflect strategies for coping with water and nutrient supply limitations. In this study, we measured several important leaf traits for 147 species sampled from a remnant, temperate deciduous broad-leaved forest in Keerqin Sandy Lands, Northeast China to test whether these traits are ‘invariant’ or dependent on water supply limitations. Our data show that average specific leaf area (SLA), nitrogen (N) and phosphorus (P) concentrations, leaf C/N, C/P and N/P were 273 cm2?g?1, 18.1 mg?g?1, 1.60 mg?g?1, 28.2, 343 and 12.4, respectively. However, most of these traits were significantly different (P?<?0.05) for different species groupings based on growth forms, phylogenetic history, photosynthetic pathways, or habitats. SLA was positively correlated with leaf P concentration across the broad spectrum of 118 species and most species functional groupings. However, SLA was not correlated with N concentration across all species or within each species functional group. SLA and N and P concentrations in dry habitats were lower than those in wet habitats, whereas leaf C/N, C/P, and N/P had the opposite trend both across all species and within major species functional groupings (herb, monocots and C3 species). Our data indicate that SLA vs. leaf N and SLA vs. P relationships may be regulated differentially for different species functional groupings and that water limitation may have a greater influence than nutrient limitation for plant growth.  相似文献   

16.
Sources of variation among the chemical and spectral properties of tropical forest canopies are poorly understood, yet chemical traits reveal potential ecosystem and phylogenetic controls, and spectral linkages to chemical traits are needed for remote sensing of functional and biological diversity. We analyzed 21 leaf traits in 395 fully sunlit canopies, representing 232 species and multiple growth forms, in a lowland mixed dipterocarp forest of Sarawak, Malaysia. Leaf traits related to light capture and growth (for example, photosynthetic pigments, nutrients) were up to 55% lower, and defense traits (for example, phenols, lignin) were 15–40% higher, in the dominant family Dipterocarpaceae and in its genus Shorea, as compared to all other canopy species. The chemical variation within Dipterocarpaceae and Shorea was equivalent to that of all other canopy species combined, highlighting the role that a single phylogenetic branch can play in creating canopy chemical diversity. Seventeen of 21 traits had more than 50% of their variation explained by taxonomic grouping, and at least 16 traits show a connection to remotely sensed spectroscopic signatures (RMSE < 15%). It is through these chemical-to-spectral linkages that studies of functional and biological diversity interactions become possible at larger spatial scales, thereby improving our understanding of the role of species in tropical forest ecosystem dynamics.  相似文献   

17.
Kumar  Mukesh  Garkoti  Satish Chandra 《Plant Ecology》2021,222(6):723-735

Across the continents, plant invasion is identified as one of the main threats to ecosystem functioning and stability. The main objective of this research was to evaluate the differences in the functional traits between invasive alien (Ageratina adenophora (Spreng.) and Lantana camara L.) and native (Berberis asiatica Roxb. Ex DC., Pyracantha crenulata (D. Don.) M. Roemer and Rubus ellipticus Sm.) shrub species of chir pine (Pinus roxburghii Sarg.) forest in the central Himalaya. Three 0.5 hectare chir pine forest stands were selected and individuals of similar diameter were tagged for comparative studies of leaf traits, growth pattern, and biomass accumulation in structural organs of each invasive alien and native species. Our one-way ANOVA and Tukey’s post hoc test results showed that both the invasive alien species have significantly (p?<?0.05) higher SLA, LWC, total chlorophyll content, foliar nutrient (N and P), RGR, LMR, SMR, nutrient uptake, and nutrient use efficiencies than native species. Leaf litter decomposition rate and nutrient release were also significantly (p?<?0.05) higher in both the invasive alien species. Native species, R. ellipticus, shared some of the traits, such as leaf area, chlorophyll content, RGR, LAR, LMR, and nutrient uptake efficiency with invasive alien species. The majority of traits differed among invasive alien and native species, implying that the success of invasive alien species is best described by being functionally distinct from native species. These findings indicate that invasive alien species had advanced functional traits which may be playing an important role in a rapid spread in the central Himalaya.

  相似文献   

18.
Li  Chunhuan  Yu  Hailong  Xu  Yixin  Zhu  Wanwan  Wang  Pan  Huang  Juying 《Plant Ecology》2022,223(4):407-421

Leaf functional traits are important for characterizing plant nutrient strategies. The C:N:P stoichiometric balance in soils and plants, which could indicate types of nutrient limitation, is altered under changing precipitation patterns. However, whether such alterations affect leaf functional traits remains unclear. We conducted a three-year simulated precipitation experiment in a desert steppe in northwestern China to determine changes in leaf photosynthetic traits and nutrient conservation traits in five plant species and tested the relationships of these traits with soil and leaf C:N:P stoichiometry. The five species showed few changes in their leaf traits under drought conditions, but they adjusted these traits (especially P traits) under extremely wet conditions (50% increase in precipitation). Improved leaf photosynthetic N and P use, lowered leaf P uptake, and enhanced leaf N resorption might help Lespedeza potaninii to rely less on soil nutrients in extremely wet environments than other species do. Leaf photosynthetic traits were regulated primarily by soil and leaf C:N:P stoichiometry. Leaf nutrient conservation traits were controlled by both leaf C:N:P stoichiometry and soil properties (i.e., enzyme activity and microbial biomass), a condition especially true for P traits. The results suggest that precipitation-induced alteration in the C:N:P stoichiometric balance might have important influences on plant nutrient use strategies and even on the nutrient cycling of desert steppes.

  相似文献   

19.
In many marine ecosystems, diatoms dominate in nutrient‐rich coastal waters while coccolithiophores are found offshore in areas where nutrients may be limiting. In lab‐controlled batch cultures, mixed‐species competition between the diatom Phaeodactylum tricornutum and the coccolithophore Emiliana huxleyi and the response of each species were examined under nitrate (N) and phosphate (P) starvation. Based on the logistic growth model and the Lotka–Volterra competition model, E. huxleyi showed higher competitive abilities than P. tricornutum under N and P starvation. For both species, cell growth was more inhibited by P starvation, while photosynthetic functions (chl a fluorescence parameters) and cellular constituents (pigments) were impaired by N starvation. The decline of photosynthetic functions occurred later in E. huxleyi (day 12) than in P. tricornutum (day 9); this time difference was associated with greater damage of the photosynthetic apparatus in P. tricornutum compared with E. huxleyi. Xanthophyll cycle pigment accumulation and the transformation from diadinoxanthin to diatoxanthin was more active in E. huxleyi than P. tricornutum, under similar N and P starvation. We concluded that E. huxleyi and P. tricornutum have different mechanisms to allocate resources and energy under nutrient starvation. It appears that E. huxleyi has a more economic strategy to adapt to nutrient depleted environments than P. tricornutum. These findings provided additional evidence explaining how N versus P limitation differentially support diatom and coccolithophore blooms in natural environments.  相似文献   

20.
凋落物分解是森林生态系统生物元素循环和能量流动的重要环节,其过程是植物与土壤获得养分的主要途径。为了量化凋落叶化学计量学性状变化过程对分解的影响及对凋落物-土壤生物化学连续体的深层理解,用凋落物分解袋法研究了不同林型各自凋落叶化学计量学性状变化及与分解速率关系,结果表明:林下各自凋落叶分解速率是马尾松林栓皮栎林马尾松-栓皮栎混交林,马尾松林、栓皮栎林、马尾松-栓皮栎混交林凋落叶分解50%和95%的时间分别是2.11 a和9.15 a,1.93 a和8.45 a,1.76 a和7.77 a;凋落叶分解过程中,化学计量学性状变化明显,分解450 d后马尾松-栓皮栎混交林碳释放最快,栓皮栎林最慢;3种凋落叶起始N含量是栓皮栎林最高,马尾松林最低,分解450 d后马尾松林、栓皮栎林和马尾松-栓皮栎混交林N含量分别增加了66.67%、44.91%和44.52%,而P含量分别释放了30.80%、38.89%和42.29%。凋落物不同化学计量学性状与分解速率关系不同,3种林型凋落叶分解速率均与N含量呈正相关(P0.01),与C含量(P0.01)、C/N比(P0.01)呈负相关,与N/P比呈负二次函数关系(P0.01),而P含量与3种林型关系不同,与栓皮栎林(P0.01)和马尾松林(P0.05)呈负线性关系,与马尾松-栓皮栎混交林呈负二次函数关系(P0.05)。研究表明,不同林型凋落叶分解中的养分动态趋向利于分解变化,N、P养分动态是生态系统碳平衡和凋落物分解速率的主要因素,混交林中混合凋落物的养分迁移是分解相对较快的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号