首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gestation and longevity scale with body mass across taxa, yet within size dimorphic taxa, males tend to have reduced lifespans compared with females. Testing life history models, and accounting for sex differences in longevity, requires obtaining accurate longitudinal data from wild populations. We provide the first report describing key life history parameters from a long‐term study of giraffes in Africa. We followed a population of Thornicroft's giraffe (Giraffa camelopardalis thornicrofti) in Zambia for over 40 years. Maximum longevity among females was approximately 28 years, with lifespan accounting for 81% of the variance in lifetime reproductive success. Average adult female life expectancy was no different than average adult male life expectancy. However, the breeding lifespan of males was about half that of females, while maximum lifespan of males was 75% that of females. Our findings support the suggestion that sex differences in maximum lifespan arise from stronger selection for lengthy lives in females than in males. Among females, longer lives are associated with greater reproductive output.  相似文献   

2.
Diatoms that produce toxic oxylipins can be detrimental to the reproductive success of aquatic invertebrates. Despite the potential importance of these toxins in shaping aquatic ecosystems, marine studies to date have focused almost exclusively on planktonic calanoid copepods. The current work examines the response of the benthic harpacticoid copepod, Tisbe holothuriae, to direct exposure to diatom-derived oxylipins and the short-term impact of oxylipin-producing diatom diets on reproductive success. The most toxic oxylipin was the polyunsaturated aldehyde (PUA) 2E,4E-decadienal with an LD50 of 9.3 μM for T. holothuriae nauplii. The least tolerant life-stage was the nauplius followed by adult males then adult females. Short-term exposure to PUA-producing diatoms (Skeletonema marinoi and Melosira nummuloides) in maternal diets had no significant impact on reproductive success compared with non-PUA-producing diets (Skeletonema costatum, Navicula hanseni, Phaeodactylum tricornutum and Tetraselmis suecica). The PUA producers had no negative impact on the survival and development of naupliar stages to adulthood. T. holothuriae expresses a higher degree of tolerance to PUA-producing diatoms than many planktonic calanoids, possibly reflecting a degree of adaptation to higher stress levels associated with the benthos. This is the first study to investigate the reproductive responses of harpacticoid copepods feeding on known PUA-producing diatoms.  相似文献   

3.
4.
Exposure to enhanced levels of ambient ultraviolet (UV) radiation (UVR) can have adverse effects on aquatic organisms including damage at the cellular and molecular level and impairment of development, fecundity and survival. Much research has been conducted on the role of the harmful UVB radiation. However, due to its greater penetration in water the more abundant UVA radiation can also act as an environmental stressor. Little is known about UVR effects on sperm characteristics although sperm cells should be especially prone to UV-induced oxidative stress. Moreover, UV-related changes in oxidative status may affect the phenotypic expression of energetically costly sexual ornaments. We investigated the effects of long-term exposure to ecologically relevant levels of simulated UVA radiation on sperm quality and sexual ornamentation in three-spined sticklebacks (Gasterosteus aculeatus). Males were assigned to three spectral exposure treatments differing in the UV spectral part so that they received either enhanced, moderate or no UVA radiation. The results reveal that exposure to enhanced ambient UVA levels had detrimental effects on both male breeding coloration and sperm velocity providing evidence that UVR affects traits targeted by pre- and post-copulatory sexual selection. By highlighting the role of UVA as a factor influencing fitness-relevant traits, our findings may contribute to a better understanding of the consequences of current and future levels of solar UVR for mating systems and life history.  相似文献   

5.
The trade‐off between the allocation of resources toward somatic maintenance or reproduction is one of the fundamentals of life history theory and predicts that females invest in offspring at the expense of their longevity or vice versa. Mate quality may also affect life history trade‐offs through mechanisms of sexual conflict; however, few studies have examined the interaction between mate quality and age at first mating in reproductive decisions. Using house crickets (Acheta domesticus), this study examines how survival and reproductive trade‐offs change based on females’ age at first reproduction and exposure to males of varying size. Females were exposed to either a large (presumably high‐quality) or small male at an early (young), middle (intermediate), or advanced (old) age, and longevity and reproductive investment were subsequently tracked. Females mated at a young age had the largest number of eggs but the shortest total lifespans while females mated at older ages produced fewer eggs but had longer total lifespans. The trade‐off between age at first mating and eggs laid appears to be mediated through higher egg‐laying rates and shorter postmating lifespans in females mated later in life. Exposure to small males resulted in shorter lifespans and higher egg‐laying rates for all females indicating that male manipulation of females, presumably through spermatophore contents, varies with male size in this species. Together, these data strongly support a trade‐off between age at first reproduction and lifespan and support the role of sexual conflict in shaping patterns of reproduction.  相似文献   

6.
Both developmental nutrition and adult nutrition affect life‐history traits; however, little is known about whether the effect of developmental nutrition depends on the adult environment experienced. We used the fruit fly to determine whether life‐history traits, particularly life span and fecundity, are affected by developmental nutrition, and whether this depends on the extent to which the adult environment allows females to realize their full reproductive potential. We raised flies on three different developmental food levels containing increasing amounts of yeast and sugar: poor, control, and rich. We found that development on poor or rich larval food resulted in several life‐history phenotypes indicative of suboptimal conditions, including increased developmental time, and, for poor food, decreased adult weight. However, development on poor larval food actually increased adult virgin life span. In addition, we manipulated the reproductive potential of the adult environment by adding yeast or yeast and a male. This manipulation interacted with larval food to determine adult fecundity. Specifically, under two adult conditions, flies raised on poor larval food had higher reproduction at certain ages – when singly mated this occurred early in life and when continuously mated with yeast this occurred during midlife. We show that poor larval food is not necessarily detrimental to key adult life‐history traits, but does exert an adult environment‐dependent effect, especially by affecting virgin life span and altering adult patterns of reproductive investment. Our findings are relevant because (1) they may explain differences between published studies on nutritional effects on life‐history traits; (2) they indicate that optimal nutritional conditions are likely to be different for larvae and adults, potentially reflecting evolutionary history; and (3) they urge for the incorporation of developmental nutritional conditions into the central life‐history concept of resource acquisition and allocation.  相似文献   

7.
When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human‐induced environmental change are often maladaptive or insufficient to overcome novel selection pressures. Anthropogenic noise is a ubiquitous and expanding disturbance with demonstrated effects on fitness‐related traits of animals like stress responses, foraging, vigilance, and pairing success. Elucidating the lifetime fitness effects of noise has been challenging because longer‐lived vertebrate systems are typically studied in this context. Here, we follow noise‐stressed invertebrates throughout their lives, assessing a comprehensive suite of life history traits, and ultimately, lifetime number of surviving offspring. We reared field crickets, Teleogryllus oceanicus, in masking traffic noise, traffic noise from which we removed frequencies that spectrally overlap with the crickets’ mate location song and peak hearing (nonmasking), or silence. We found that exposure to masking noise delayed maturity and reduced adult lifespan; crickets exposed to masking noise spent 23% more time in juvenile stages and 13% less time as reproductive adults than those exposed to no traffic noise. Chronic lifetime exposure to noise, however, did not affect lifetime reproductive output (number of eggs or surviving offspring), perhaps because mating provided females a substantial longevity benefit. Nevertheless, these results are concerning as they highlight multiple ways in which traffic noise may reduce invertebrate fitness. We encourage researchers to consider effects of anthropogenic disturbance on growth, survival, and reproductive traits simultaneously because changes in these traits may amplify or nullify one another.  相似文献   

8.
Although central to understanding life‐history evolution, the relationship between lifetime reproductive success and longevity remains uncertain in many organisms. In social insects, no studies have reported estimates of queens’ lifetime reproductive success and longevity within populations, despite the importance of understanding how sociality and associated within‐group conflict affect life‐history traits. To address this issue, we studied two samples of colonies of the annual bumblebee, Bombus terrestris audax, reared from wild‐caught queens from a single population. In both samples, queens’ lifetime reproductive success, measured as either queens’ inclusive fitness or as total biomass of queen‐produced sexuals (new queens and males), was significantly positively associated with queen longevity, measured from the day the first worker was produced. We suggest that a positive relationship between reproductive success and longevity was inherited from nonsocial ancestors showing parental care and maintained, at least in part, because the presence of workers buffers queens against extrinsic mortality.  相似文献   

9.
Exposure of plants to UV‐C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub‐lethal UV‐C exposure on Arabidopsis plants when irradiated with increasing dosages of UV‐C radiation. Following UV‐C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m?2 dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage‐ and time‐dependent manner. Analysis of H2O2 activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence‐related responses at each UV‐C dosage tested. Interestingly, in response to UV‐C irradiation the production of callose (β‐1,3‐glucan) was identified at all dosages examined. Together, these results show plant responses to UV‐C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV‐C as an inducer of plant defence.  相似文献   

10.
Life history strategies often shape biological interactions by specifying the parameters for possible encounters, such as the timing, frequency, or way of exposure to parasites. Consequentially, alterations in life‐history strategies are closely intertwined with such interaction processes. Understanding the connection between life‐history alterations and host–parasite interactions can therefore be important to unveil potential links between adaptation to environmental change and changes in interaction processes. Here, we studied how two different host–parasite interaction processes, oral and hemocoelic exposure to bacteria, affect various life histories of the Glanville fritillary butterfly Melitaea cinxia. We either fed or injected adult butterflies with the bacterium Micrococcus luteus and observed for differences in immune defenses, reproductive life histories, and longevity, compared to control exposures. Our results indicate differences in how female butterflies adapt to the two exposure types. Orally infected females showed a reduction in clutch size and an earlier onset of reproduction, whereas a reduction in egg weight was observed for hemocoelically exposed females. Both exposure types also led to shorter intervals between clutches and a reduced life span. These results indicate a relationship between host–parasite interactions and changes in life‐history strategies. This relationship could cast restrictions on the ability to adapt to new environments and consequentially influence the population dynamics of a species in changing environmental conditions.  相似文献   

11.
Studies of age‐specific reproductive performance are fundamental to our understanding of population dynamics and the evolution of life‐history strategies. In species with bi‐parental care, reproductive ageing trajectories of either parent may be influenced by their partner's age, but this has rarely been investigated. We investigated within‐individual age‐specific performance (laying date and number of eggs laid) in wild female blue tits Cyanistes caeruleus and evaluated how the age and longevity of their male partner indirectly influenced the females’ reproductive performance. Females showed clear age‐dependence in both laying date and number of eggs laid. We found that female reproductive performance improved in early life, before showing a decline. Longer‐lived females had an earlier laying date throughout their lives than shorter‐lived females, but there was no difference in number of eggs laid between longer‐ and shorter‐lived females. Within breeding pairs, the female's (age‐specific) reproductive performance was not dependent on the age and longevity of the male partner. We conclude that the age and quality of the male partner may be of little importance for traits that are under direct female control.  相似文献   

12.
Ultraviolet (UV) radiation is harmful to all life, and the ongoing depletion of the ozone layer is likely to affect interactions among both terrestrial and aquatic organisms. Some organisms have evolved adaptations to reduce radiation damage, such as the various types of protective pigmentation of freshwater zooplankton. However, strong pigmentation also increases vulnerability to visually hunting predators. Hence, where both UV radiation and predation are intense, zooplankton may be sandwiched between conflicting selective pressures: to be pigmented and to be transparent at the same time. Here, I show that the level of pigmentation in copepods is up to ten times higher in lakes without predatory fishes than where fishes are present. Moreover, animals from the same population exposed to either UV light or predator scent showed a 10% difference in pigmentation after only four days, suggesting that pigmentation is an inducible trait. Hence, individual copepods are not passive victims of selective predation or radiation damage, but adjust the level of pigmentation according to the prevailing threat. The ability to adjust pigmentation level rapidly may be especially useful in situations where risk assessment is difficult due to strong seasonal and spatial variation in risk variables, such as in Arctic regions. With progressive thinning of the ozone layer, the ability of some but not other organisms to adjust protection against UV radiation may lead to counter-intuitive, large-scale alterations in freshwater food webs.  相似文献   

13.
The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post‐reproductive lifespan. Moreover, most studies have examined long‐established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non‐laboratory‐adapted wild populations of D. melanogaster. Populations varied in a number of life‐history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age‐specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post‐ovipository period. Individual females exhibited clear‐cut fecundity peaks, which contrasts with previous analyses, and post‐peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post‐reproductive lifespan, which on average made up 40% of total lifespan. Post‐reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random ‘add‐on’ at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life‐history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.  相似文献   

14.
Despite a large body of knowledge about the evolution of life histories, we know little about how variable food availability during an individual's development affects its life history. We measured the effects of manipulating food levels during early and late larval development of the mosquito Aedes aegypti on its growth rate, life history and reproductive success. Switching from low to high food led to compensatory growth: individuals grew more rapidly during late larval development and emerged at a size close to that of mosquitoes consistently reared at high food. However, switching to high food had very little effect on longevity, and fecundity and reproductive success were considerably lower than in consistently well‐fed mosquitoes. Changing from high to low food led to adults with similar size as in consistently badly nourished mosquitoes, but even lower fecundity and reproductive success. A rapid response of growth to changing resources can thus have unexpected effects in later life and in lifetime reproductive success. More generally, our study emphasizes the importance of varying developmental conditions for the evolutionary pressures underlying life‐history evolution.  相似文献   

15.
Infections can have detrimental effects on the fitness of an animal. Reproducing females may therefore be sensitive to cues of infection and be able to adaptively change their oviposition strategy in the face of infection. As one possibility, females could make a terminal investment and shift reproductive effort from future to current reproduction as life expectancy decreases. We hypothesized that females of the noctuid moth Heliothis virescens make a terminal investment and adapt their oviposition timing as well as their oviposition site selectivity in response to an immune challenge. We indeed found that females that were challenged with the bacterial entomopathogen Serratia entomophila laid more eggs than control females one night after the challenge. Additionally, bacteria‐challenged females were less discriminating between oviposition sites than control females. Whereas control females preferred undamaged over damaged plants, immune‐challenged females did not differentiate between the two. These results indicate that terminal investment is part of the life history of H. virescens females. Moreover, our results suggest that the strategy of terminal investment in H. virescens oviposition represents a fitness trade‐off for females: in the face of infection, an increase in oviposition rate enhances female fitness, whereas low oviposition site selectivity reduces female fitness.  相似文献   

16.
Abstract Helicoverpa armigera adults display a conspicuous positive phototactic behavior to light stimuli, and are especially sensitive to ultraviolet (UV) light. The effects of UV‐A (longwave) exposures on adult longevity and reproduction in H. armigera were investigated, as well as the development of the F1 generation. Paired adults were exposed to UV‐A for various time periods (0, 1, 5 and 9 h/day), until the end of adult life. The results showed that adult longevity decreased with increasing exposure time for both sexes, and a significant decrease was observed after exposure for 5 and 9 h/day. Fecundity increased when adults were exposed for 1 and 5 h/day, and a significant difference was observed in the 5 h/day group. Oviposition rates of females in all treatments were significantly higher than in the control. Exposure to UV‐A for longer periods (5 and 9 h/day) caused a decline in cumulative survival of F1 immature stages, but no significant differences were found in egg hatch, pupation and eclosion. The developmental periods of F1 larvae were significantly prolonged after exposure to UV‐A for 5 and 9 h/day. UV‐A radiation had no significant effects on F1 pupal period.  相似文献   

17.
In temperate lakes, asynchronous cycles in surface water temperatures and incident ultraviolet (UV) radiation expose aquatic organisms to damaging UV radiation at different temperatures. The enzyme systems that repair UV‐induced DNA damage are temperature dependent, and thus potentially less effective at repairing DNA damage at lower temperatures. This hypothesis was tested by examining the levels of UV‐induced DNA damage in the freshwater crustacean Daphnia pulicaria in the presence and absence of longer‐wavelength photoreactivating radiation (PRR) that induces photoenzymatic repair (PER) of DNA damage. By exposing both live and dead (freeze‐killed) Daphnia as well as raw DNA to UV‐B in the presence and absence of PRR, we were able to estimate the relative importance and temperature dependence of PER (light repair), nucleotide excision repair (NER, dark repair), and photoprotection (PP). Total DNA damage increased with increasing temperature. However, the even greater increase in DNA repair rates at higher temperatures led net DNA damage (total DNA damage minus repair) to be greater at lower temperatures. Photoprotection accounted for a much greater proportion of the reduction in DNA damage than did repair. Experiments that looked at survival rates following UV exposure demonstrated that PER increased survival rates. The important implication is that aquatic organisms that depend heavily on DNA repair processes may be less able to survive high UV exposure in low temperature environments. Photoprotection may be more effective under the low temperature, high UV conditions such as are found in early spring or at high elevations.  相似文献   

18.
Traditional selection for sow reproductive longevity is ineffective due to low heritability and late expression of the trait. Incorporation of DNA markers into selection programs is potentially a more practical approach for improving sow lifetime productivity. Using a resource population of crossbred gilts, we explored pleiotropic sources of variation that influence age at puberty and reproductive longevity. Of the traits recorded before breeding, only age at puberty significantly affected the probability that females would produce a first parity litter. The genetic variance explained by 1‐Mb windows of the sow genome, compared across traits, uncovered regions that influence both age at puberty and lifetime number of parities. Allelic variants of SNPs located on SSC5 (27–28 Mb), SSC8 (36–37 Mb) and SSC12 (1.2–2 Mb) exhibited additive effects and were associated with both early expression of puberty and a greater than average number of lifetime parities. Combined analysis of these SNPs showed that an increase in the number of favorable alleles had positive impact on reproductive longevity, increasing number of parities by up to 1.36. The region located on SSC5 harbors non‐synonymous alleles in the arginine vasopressin receptor 1A (AVPR1A) gene, a G‐protein‐coupled receptor associated with social and reproductive behaviors in voles and humans and a candidate for the observed effects. This region is characterized by high levels of linkage disequilibrium in different lines and could be exploited in marker‐assisted selection programs across populations to increase sow reproductive longevity.  相似文献   

19.
Diet restriction increases longevity while reducing fecundity in a broad range of organisms. However, there are exceptions to this rule, and the causes of these exceptions remain unclear. One hypothesis is that short‐lived, semelparous organisms gain no benefit from increased longevity regardless of nutritional resources. Another hypothesis is that organisms may alter their behaviour to compensate for nutrient deficiencies. We examined these hypotheses in the colonial orb‐weaving spider Cyrtophora citricola. Sexual cannibalism is frequent in this species so that females are long lived and interoparous while males are semelparous. Because of these differing sexual strategies, we predicted that the common pattern of increased longevity under diet restriction would hold for females but not for males. We also investigated in a semi‐natural setting whether spiders could compensate for diet restriction by altering their feeding behaviour. Diet‐restricted females produced fewer offspring but lived longer than well‐fed females, while diet had no effect on male longevity. Despite being semelparous, virgin males were quite long‐lived, suggesting that potential lifespan is relatively unimportant in determining the effects of diet restriction. Contrary to our predictions, females were unable to compensate for their restricted diet by altering their foraging behaviour. Instead, semi‐natural conditions increased the differences between spiders on high and low diets, suggesting that the effects of diet restriction can be pervasive under natural conditions.  相似文献   

20.
Visual cues leading to host selection and landing are of major importance for aphids and evidence suggests that flight activity is very dependent on ultraviolet (UV)‐A radiation in the environment. At the same time research on insect plant hosts suggest that the UV‐B component can deter some pests via changes in secondary metabolite chemistry. Here, we examine the potential of UV (UV‐A/UV‐B) radiation to control insect pests in the glasshouse environment. We first examined artificial exposure to UV‐B and the potential to trigger morphological and biochemical modifications in pepper (Capsicum annuum L., Solanaceae) with implications for the fitness of green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). UV‐B caused accumulation of leaf secondary metabolites and soluble carbohydrates, and stimulated photosynthetic pigments. However, UV‐B did not impact on foliar protein content and aphid performance was unaffected. Next, we studied how altering the UV‐A/UV‐B ratio environment affected aphid orientation and spatial distribution over time, either directly or by exposing plants to supplemental UV before insect introduction. Aphids directly settled and dispersed on their host pepper plants more readily in the presence of supplemental UV‐A and UV‐B. In the control treatment with ambient glasshouse UV‐A and UV‐B, insects remained more aggregated. Furthermore, insects were less attracted to peppers pre‐exposed to supplemental UV‐A and UV‐B radiation. Our results suggest that suppression of UV‐A and UV‐B inside the protected environment reduces aphid colonization and dispersal. Furthermore, application of moderate exposure of young pepper plants to supplemental UV‐B radiation could aid in protection from the colonization by phytophagous insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号