首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinal and optic nerve diseases are degenerative ocular pathologies which lead to irreversible visual loss. Since the advanced therapies availability, cell-based therapies offer a new all-encompassing approach. Advances in the knowledge of neuroprotection, immunomodulation and regenerative properties of mesenchymal stem cells(MSCs) have been obtained by several preclinical studies of various neurodegenerative diseases. It has provided the opportunity to perform the translation of this knowledge to prospective treatment approaches for clinical practice. Since 2008, several first steps projecting new treatment approaches, have been taken regarding the use of cell therapy in patients with neurodegenerative pathologies of optic nerve and retina. Most of the clinical trials using MSCs are in Ⅰ/Ⅱ phase, recruiting patients or ongoing, and they have as main objective the safety assessment of MSCs using various routes of administration. However, it is important to recognize that, there is still a long way to go to reach clinical trials phase Ⅲ-Ⅳ. Hence, it is necessary to continue preclinical and clinical studies to improve this new therapeutic tool. This paper reviews the latest progress of MSCs in human clinical trials for retinal and optic nerve diseases.  相似文献   

2.
BackgroundStereotactic radiosurgery (SRS) method has been considered the first-line treatment option to treat patients involved with pre-optic nerve tumors. However, studies have shown that using fractionated SRS, normal tissue sparing and tumor dose can be strongly increased simultaneously. Our main goal was to illustrate the effects of fractionated SRS approach in optic nerve tumor treatment and its adjacent sensitive structures.Materials and methods19 patients involved in optic nerve tumor with clinical symptoms of vision loss were treated with Gamma Knife radiosurgery in three sessions with 12 hours intervals between them. The prescribed dose was about 6.0 ± 1.2 Gy. Patient-related parameters including pre-treatment and after-treatment tumor size, visual acuity and visual field were evaluated using the Snell chart and MRI imaging. Patients were followed for about 14 months.ResultThe overall result showed vision improvement for patients with low and moderate visual loss. However, there was no significant improvement in patients with severe visual loss. Relative improvement was observed in blind patients, although poorly. There was no evidence of growth, recurrence, or new tumor after treatment in patients.ConclusionFractionated gamma knife radiosurgery offers a safe and effective alternative for benign lesions adjacent to the optic nerve.  相似文献   

3.
Recent work has suggested that the N95 peak of the transient pattern electroretinogram (PERG) may be a more sensitve indicator of the late stages of retinal function prior to optic nerve activation than the P50 peak. In the report, we show that a new measure of N95 amplitude, based on digital filtering methods to identify a non-linear baseline measurement, greatly reduced the amplitude variation in a population of 50 normal subjects when compared with two other plausible measures. We then used that new measure to follow the time course of N95 amplitudes in 12 optic neuritis patients. It was found that mintenance of a normal N95 amplitude at 6 months after onset of optic neuritis was always associated with excellent clinical recovery as measured by visual fields, acuity, presence or absence of an afferent pupil and optic atrophy, and contrast sensitivity (CS). Loss of N95 amplitude to below laboratory limits of normal was associated with abnormalities in these indicators of visual function. This study supports the idea that the N95 peak represents retinal ganglion cell function.  相似文献   

4.
Hypoxic-ischemic injuries (HII) of the brain, optic pathways, and skin are frequently associated with poor neurological and clinical outcome. Unfortunately, no new therapeutic approaches have been proposed for these conditions. Recently, experimental and clinical studies showed that nerve growth factor (NGF) can improve neurological deficits, visual loss and skin damage after HII. Based on these studies, we report the effects of NGF administration in different lesions of the brain, optic pathways and skin. 2.5S NGF purified and lyophilized from male mouse submaxillary glands was utilized for the treatment. NGF administration was started in absence of recovery after conventional and standardized treatment. One mg NGF was administered via the external catheter into the brain, by drop administration in the eye, and by subcutaneous administration in the skin. We treated 4 patients: 2 children with hypoxic-ischemic brain damage, an adult patient with an optic glioma-induced visual loss and a child with a severe crush syndrome of the lower left limb. After NGF treatment, we observed an amelioration of both neurological and electrophysiological function of the brain, a subjective and objective improvement of visual function, and a gradual improvement of ischemic skin lesion. No side effects were related to NGF treatment in all patients studied. Our observation shows that NGF administration may be an effective and safe adjunct therapy in patients with severe HII. The beneficial and prolonged effect on nerve function suggests a neuroprotective mechanism exerted by NGF on the residual viable neurological pathways of these patients.  相似文献   

5.
Glaucoma is a leading cause of irreversible blindness worldwide and causes progressive visual impairment attributable to the dysfunction and death of retinal ganglion cells (RGCs). Progression of visual field damage is slow and typically painless. Thus, glaucoma is often diagnosed after a substantial percentage of RGCs has been damaged. To date, clinical interventions are mainly restricted to the reduction of intraocular pressure (IOP), one of the major risk factors for this disease. However, the lowering of IOP is often insufficient to halt or reverse the progress of visual loss, underlining the need for the development of alternative treatment strategies. Several lines of evidence suggest that axonal damage of RGCs occurs primary at the optic nerve head, where axons appear to be most vulnerable. Axonal injury leads to the functional loss of RGCs and subsequently induces the death of the neurons. However, the detailed molecular mechanism(s) underlying IOP-induced optic nerve injury remain poorly understood. Moreover, whether glaucoma pathophysiology is primarily axonal, glial, or vascular remains unclear. Therefore, protective strategies to prevent further axonal and subsequent soma degeneration are of great importance to limit the progression of sight loss. In addition, strategies that stimulate injured RGCs to regenerate and reconnect axons with their central targets are necessary for functional restoration. The present review provides an overview of the context of glaucoma pathogenesis and surveys recent findings regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways.  相似文献   

6.
7.
Retinal ganglion cells (RGCs) are central nervous system (CNS) neurons that transmit visual information from the retina to the brain. Apoptotic RGC degeneration causes visual impairment that can be modeled by optic nerve crush. Neuronal apoptosis is also a salient feature of CNS trauma, ischemia (stroke), and diseases of the CNS such as Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. Optic nerve crush induces the apoptotic cell death of ~ 70% of RGCs within the first 14 days after injury. This model is particularly attractive for studying adult neuron apoptosis because the time-course of RGC death is well established and axon regeneration within the myelinated optic nerve can be concurrently evaluated. Here, we performed a large scale iTRAQ proteomic study to identify and quantify proteins of the rat retina at 1, 3, 4, 7, 14, and 21 days after optic nerve crush. In total, 337 proteins were identified, and 110 were differentially regulated after injury. Of these, 58 proteins were upregulated (>1.3 ×), 46 were downregulated (<0.7 ×), and 6 showed both positive and negative regulation over 21 days, relative to normal retinas. Among the differentially expressed proteins, Thymosin-β4 showed an early upregulation at 3 days, the time-point that immediately precedes the induction of RGC apoptosis after injury. We examined the effect of exogenous Thymosin-β4 administration on RGC death after optic nerve injury. Intraocular injections of Thymosin-β4 significantly increased RGC survival by ~ 3-fold compared to controls and enhanced axon regeneration after crush, demonstrating therapeutic potential for CNS insults. Overall, our study identified numerous proteins that are differentially regulated at key time-points after optic nerve crush, and how the temporal profiles of their expression parallel RGC death. This data will aid in the future development of novel therapeutics to promote neuronal survival and regeneration in the adult CNS.  相似文献   

8.
Pax genes play a pivotal role in development of the vertebrate visual system. Pax6 is the master control gene for eye development: ectopic expression of Pax6 in Xenopus laevis and Drosphila melanogaster leads to the formation of differentiated eyes on the legs or wings. Pax6 is involved in formation of ganglion cells of the retina, as well as cells of the lens, iris and cornea. In addition Pax6 may play a role in axon guidance in the visual system. Pax2 regulates differentiation of the optic disk through which retinal ganglion cell axons exit the eye. Furthermore, Pax2 plays a critical role in development of the optic chiasm and in the guidance of axons along the contralateral or ipsilateral tracts of the optic nerve to visual targets in the brain. During development Pax7 is expressed in neuronal cells of one of the major visual targets in the brain, the optic tectum/superior colliculus. Neurons expressing Pax7 migrate towards the pia and concentrate in the stratum griseum superficiale (SGFS), the target site for retinal axons. Together, expression of Pax2, 6 and 7 may guide axons during formation of functional retinotectal/collicular projections. Highly regulated Pax gene expression is also observed in mature animals. Moreover, evidence suggests that Pax genes are important for regeneration of the visual system. We are currently investigating Pax gene expression in species that display a range of outcomes of optic nerve regeneration. We predict that such information will provide valuable insights for the induction of successful regeneration of the optic nerve and of other regions of the central nervous system in mammals including man.  相似文献   

9.
In this study, 50 patients with anterior ischemic optic neuropathy due to saddle block were selected as the experimental group, and 50 healthy subjects were used as the control group to conduct a study. The best corrected visual acuity examination, optical coherence tomography and visual evoked potential examination were performed on the two groups. The results of the study showed that the majority of patients were middle-aged and older people over the age of 50, but the youngest patients were only 37 years old. After various examinations, it was found that patients with optic nerve injury had a significant reduction in the best corrected visual acuity compared with healthy people. After the onset of the disease, the optic nerve fiber layer will first increase and then decline. During the course of the disease, the patient's optic nerve fiber layer will gradually thin to a much lower level than healthy people. And in comparing the thickness of the optic nerve fiber layer in patients with systemic disease and no systemic disease, it is found that the degree of optic nerve damage is more serious in patients with systemic diseases. After the VEP examination, the difference between the P100 wave latency and the N75-P100 amplitude of the diseased eye and the unaffected eye was statistically significant. Moreover, the difference between the patient's diseased eye and the healthy human eye is almost the same as that of the unaffected eye.  相似文献   

10.
Optic neuritis (ON), which is an acute inflammatory autoimmune demyelinating disease of the central nervous system (CNS), often occurs in multiple sclerosis (MS). ON is an early diagnostic sign in most MS patients caused by damage to the optic nerve leading to visual dysfunction. Various features of both MS and ON can be studied following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in Lewis rats. Inflammation and cell death in the optic nerve, with subsequent damage to the retinal ganglion cells in the retina, are thought to correlate with visual dysfunction. Thus, characterizing the pathophysiological changes that lead to visual dysfunction in EAE animals may help develop novel targets for therapeutic intervention. We treated EAE animals with and without the calpain inhibitor calpeptin (CP). Our studies demonstrated that the Ca2+‐activated neutral protease calpain was upregulated in the optic nerve following induction of EAE at the onset of clinical signs (OCS) of the disease, and these changes were attenuated following treatment with CP. These reductions correlated with decreases in inflammation (cytokines, iNOS, COX‐2, and NF‐κB), and microgliosis (i.e. activated microglia). We observed that calpain inhibition reduced astrogliosis (reactive astroglia) and expression of aquaporin 4 (AQP4). The balance of Th1/Th2 cytokine production and also expression of the Th1‐related CCR5 and CXCR3 chemokine receptors influence many pathological processes and play both causative and protective roles in neuron damage. Our data indicated that CP suppressed cytokine imbalances. Also, Bax:Bcl‐2 ratio, production of tBid, PARP‐1, expression and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated after treatment with CP. Our results demonstrated that CP decreased demyelination [loss of myelin basic protein (MBP)] and axonal damage [increase in dephosphorylated neurofilament protein (de‐NFP)], and also promoted intracellular neuroprotective pathways in optic nerve in EAE rats. Thus, these data suggest that calpain is involved in inflammatory as well as in neurodegenerative aspects of the disease and may be a promising target for treating ON in EAE and MS.  相似文献   

11.
Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension.  相似文献   

12.
Ganglion cell axon pathfinding in the retina and optic nerve   总被引:3,自引:0,他引:3  
The eye is a highly specialized structure that gathers and converts light information into neuronal signals. These signals are relayed along axons of retinal ganglion cells (RGCs) to visual centers in the brain for processing. In this review, we discuss the pathfinding tasks RGC axons face during development and the molecular mechanisms known to be involved. The data at hand support the presence of multiple axon guidance mechanisms concentrically organized around the optic nerve head, each of which appears to involve both growth-promoting and growth-inhibitory guidance molecules. Together, these strategies ensure proper optic nerve formation and establish the anatomical pathway for faithful transmission of information between the retina and the brain.  相似文献   

13.
Within a few decades, the repair of long neuronal pathways such as spinal cord tracts, the optic nerve or intracerebral tracts has gone from being strongly contested to being recognized as a potential clinical challenge. Cut axonal stumps within the optic nerve were originally thought to retract and become irreversibly necrotic within the injury zone. Optic nerve astrocytes were assumed to form a gliotic scar and remodelling of the extracellular matrix to result in a forbidden environment for re-growth of axons. Retrograde signals to the ganglion cell bodies were considered to prevent anabolism, thus also initiating apoptotic death and gliotic repair within the retina. However, increasing evidence suggests the reversibility of these regressive processes, as shown by the analysis of molecular events at the site of injury and within ganglion cells. We review optic nerve repair from the perspective of the proximal axon stump being a major player in determining the successful formation of a growth cone. The axonal stump and consequently the prospective growth cone, communicates with astrocytes, microglial cells and the extracellular matrix via a panoply of molecular tools. We initially highlight these aspects on the basis of recent data from numerous laboratories. Then, we examine the mechanisms by which an injury-induced growth cone can sense its surroundings within the area distal to the injury. Based on requirements for successful axonal elongation within the optic nerve, we explore the models employed to instigate successful growth cone formation by ganglion cell stimulation and optic nerve remodelling, which in turn accelerate growth. Ultimately, with regard to the proteomics of regenerating retinal tissue, we discuss the discovery of isoforms of crystallins, with crystallin beta-b2 (crybb2) being clearly upregulated in the regenerating retina. Crystallins are produced and used to promote the elongation of growth cones. In vivo and in vitro, crystallins beta and gamma additionally promote the growth of axons by enhancing the production of ciliary neurotrophic factor (CNTF), indicating that they also act on astrocytes to promote axonal regrowth synergistically. These are the first data showing that axonal regeneration is related to crybb2 movement within neurons and to additional stimulation of CNTF. We demonstrate that neuronal crystallins constitute a novel class of neurite-promoting factors that probably operate through an autocrine and paracrine mechanism and that they can be used in neurodegenerative diseases. Thus, the post-injury fate of neurons cannot be seen merely as inevitable but, instead, must be regarded as a challenge to shape conditions for initiating growth cone formation to repair the damaged optic nerve.  相似文献   

14.
X Wang  Y Li  Y He  HS Liang  EZ Liu 《PloS one》2012,7(9):e44360

Background

Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress.

Methodology/Principal Findings

In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm2 (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75 /mm2 (46.16% survival rate) 2 weeks post surgery; 505.03±118.67 /mm2 (30.52% survival rate) 4 weeks post surgery; 436.86±76.36 /mm2 (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74 /mm2 (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury.

Conclusions/Significance

The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury.  相似文献   

15.
The gene responsible for neurofibromatosis type 1 (NF1) encodes a tumor suppressor that functions as a negative regulator of the Ras proto-oncogene. Individuals with germline mutations in NF1 are predisposed to the development of benign and malignant tumors of the peripheral and central nervous system (CNS). Children with this disease suffer a high incidence of optic gliomas, a benign but potentially debilitating tumor of the optic nerve; and an increased incidence of malignant astrocytoma, reactive astrogliosis and intellectual deficits. In the present study, we have sought insight into the molecular and cellular basis of NF1-associated CNS pathologies. We show that mice genetically engineered to lack NF1 in CNS exhibit a variety of defects in glial cells. Primary among these is a developmental defect resulting in global reactive astrogliosis in the adult brain and increased proliferation of glial progenitor cells leading to enlarged optic nerves. As a consequence, all of the mutant optic nerves develop hyperplastic lesions, some of which progress to optic pathway gliomas. These data point to hyperproliferative glial progenitors as the source of the optic tumors and provide a genetic model for NF1-associated astrogliosis and optic glioma.  相似文献   

16.
Responses of relay neurons of the dorsal lateral geniculate body to stimulation of area 17 of the visual cortex and the optic chiasma were studied in curarized cats. A high degree of correlation was found between the latent periods of antidromic responses of these neurons to stimulation of the visual cortex and orthodromic responses of the same neurons to stimulation of the optic chiasma (r=0.895; P=0.01). In 9% of cases antidromic unit responses were recorded to stimulation of the optic chiasma, evidence that the optic nerve contains centrifugal fibers. The functional role of the temporal dispersion of the afferent flow in the visual system is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 606–612, November–December, 1978.  相似文献   

17.
A developmental and ultrastructural study of the optic chiasma in Xenopus   总被引:1,自引:0,他引:1  
The structure of the optic chiasma in Xenopus tadpoles has been investigated by light and electron microscopy. Where the optic nerve approaches the chiasma, a tongue of cells protrudes from the periventricular cell mass into the dorsal part of the nerve. Glial processes from this tongue of cells ensheath fascicles of optic axons as they enter the brain. Coincident with this partitioning, the annular arrangement of axons in the optic nerve changes to the laminar organization of the optic tract. Beyond the site of this rearrangement, all newly growing axons accumulate in the ventral-most part of the nerve and pass into the region between the periventricular cells and pia which we have called the 'bridge'. This region is characterized by a loose meshwork of glial cell processes, intercellular spaces and the presence of both optic and nonoptic axons. In the bridge, putative growth cones of retinal ganglion cell axons are found in the intercellular spaces in contact with both the glia and with other axons. The newly growing axons from each eye cross in the bridge at the midline and pass into the superficial layers of the contralateral optic tracts. As the system continues to grow, previous generations of axon, which initially crossed in the existing bridge, are displaced dorsally and caudally, forming the deeper layers of the chiasma. At their point of crossing in the deeper layers, these fascicles of axons from each eye interweave in an intimate fashion. There is no glial segregation of the older axons as they interweave within the chiasma.  相似文献   

18.
An acquired pit of the optic nerve (APON) is a discrete, focal area of depression within the optic cup at the level of the lamina cribrosa. It is an under-diagnosed sign of glaucoma damage due to its subtle appearance. APONs occur more frequently unilaterally and in patients with normal-tension glaucoma (NTG). They often correspond to a deep, sharp-margined scotoma approaching or involving fixation. Given the location and progressive nature of the associated visual field defects, glaucoma patients and glaucoma suspects should be evaluated for this sign of localized optic nerve damage.  相似文献   

19.
The optic disc develops at the interface between optic stalk and retina, and enables both the exit of visual fibres and the entrance of mesenchymal cells that will form the hyaloid artery. In spite of the importance of the optic disc for eye function, little is known about the mechanisms that control its development. Here, we show that in mouse embryos, retinal fissure precursors can be recognised by the expression of netrin 1 and the overlapping distribution of both optic stalk (Pax2, Vax1) and ventral neural retina markers (Vax2, Raldh3). We also show that in the absence of Bmp7, fissure formation is not initiated. This absence is associated with a reduced cell proliferation and apoptosis in the proximoventral quadrant of the optic cup, lack of the hyaloid artery, optic nerve aplasia, and intra-retinal misrouting of RGC axons. BMP7 addition to organotypic cultures of optic vesicles from Bmp7-/- embryos rescues Pax2 expression in the ventral region, while follistatin, a BMP7 antagonist, prevents it in early, but not in late, optic vesicle cultures from wild-type embryos. The presence of Pax2-positive cells in late optic cup is instead abolished by interfering with Shh signalling. Furthermore, SHH addition re-establishes Pax2 expression in late optic cups derived from ocular retardation (or) embryos, where optic disc development is impaired owing to the near absence of SHH-producing RGC. Collectively, these data indicate that BMP7 is required for retinal fissure formation and that its activity is needed, before SHH signalling, for the generation of PAX2-positive cells at the optic disc.  相似文献   

20.
Pre-existing neuronal pathways in the developing optic lobes of Drosophila   总被引:3,自引:0,他引:3  
We have identified a set of larval neurones in the developing adult optic lobes of Drosophila by selectively labelling cells that have undergone only a few mitoses. A cluster of three cells is located in each of the optic lobes near the insertion site of the optic stalk. Their axons fasciculate with fibres of the larval optic nerve, the Bolwig's nerve, and then form part of the posterior optic tract. These cells are likely to be first order interneurones of the larval visual system. Unlike the Bolwig's nerve, they persist into the adult stage. The possibility of a pioneering function of the larval visual system during formation of the adult optic lobe neuropil is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号