首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to measure the communities associated with different seagrass species to predict how shifts in seagrass species composition may affect associated fauna. In the northwestern Gulf of Mexico, coverage of the historically dominant shoal grass (Halodule wrightii) is decreasing, while coverage of manatee grass (Syringodium filiforme) and turtle grass (Thalassia testudinum) is increasing. We conducted a survey of fishes, crabs, and shrimp in monospecific beds of shoal, manatee, and turtle grass habitats of South Texas, USA to assess how changes in sea grass species composition would affect associated fauna. We measured seagrass parameters including shoot density, above ground biomass, epiphyte type, and epiphyte abundance to investigate relationships between faunal abundance and these seagrass parameters. We observed significant differences in communities among three seagrass species, even though these organisms are highly motile and could easily travel among the different seagrasses. Results showed species specific relationships among several different characteristics of the seagrass community and individual species abundance. More work is needed to discern the drivers of the complex relationships between individual seagrass species and their associated fauna.  相似文献   

2.
Studies on the effects of within-patch scale structure of seagrass habitats on predator–prey fish interactions and abundance/habitat use patterns were reviewed. Most laboratory experiments have employed chase-and-attack predators, usually resulting in lower foraging efficiency in (denser) seagrass. However, a few laboratory procedures employed alternative foraging tactics, resulting in no differences in prey mortality rates. Field studies did not always result in lower prey mortality rates in seagrass habitats. Accordingly, it is premature to conclude that seagrass presence is almost always negatively related to predator foraging efficiency or that increasing seagrass abundance is usually associated with a decrease in predator efficiency. Because several categories of predator and prey fishes occur in seagrass habitats, further studies are needed with all of these predator–prey combinations, in order to fully clarify predator–prey fish interactions in association with seagrass structure. Seagrass fishes have been shown to respond to alterations in seagrass structure in various ways: seagrass height and/or density reduction or clearance resulted in decreased abundance of some species but increases or no change in others. Some explanations have been proposed, not all mutually exclusive, for these phenomena. Although within-patch scale processes have been well studied, room exists for improvement. For example, predator–prey fish interactions in relation to varying within-patch scale complexity is not yet fully understand. The relationships of patch size, edge effects and within-patch scale complexity also still remain unclear. Further studies, which add to the clarification of within-patch scale process, will in turn improve our understanding of larger spatial scale processes.  相似文献   

3.
Seagrasses form temporally dynamic, fragmented subtidal landscapes in which both large- and small-scale habitat structure may influence faunal survival and abundance. We compared the relative influences of seagrass (Zostera marina L.) habitat fragmentation (patch size and isolation) and structural complexity (shoot density) on juvenile blue crab (Callinectes sapidus Rathbun) survival and density in a Chesapeake Bay seagrass meadow. We tethered crabs to measure relative survival, suction sampled for crabs to measure density, and took seagrass cores to measure shoot density in patches spanning six orders of magnitude (ca. 0.25-30,000 m2) both before (June) and after (September) seasonally predictable decreases in seagrass structural complexity and increases in seagrass fragmentation. We also determined if juvenile blue crab density and seagrass shoot density varied between the edge and the interior of patches. In June, juvenile blue crab survival was not linearly related to seagrass patch size or to shoot density, but was significantly lower in patches separated by large expanses of unvegetated sediment (isolated patches) than in patches separated by <1 m of unvegetated sediment (connected patches). In September, crab survival was inversely correlated with seagrass shoot density. This inverse correlation was likely due to density-dependent predation by juvenile conspecifics (i.e. cannibalism); juvenile blue crab density increased with seagrass shoot density, was inversely correlated with crab survival, and was greater in September than in June. Shoot density effects on predator behavior and on conspecific density also likely caused crab survival to be lower in isolated patches than in connected patches in June. Isolated patches were either large (patch area >3000 m2) or very small (<1 m2). Large isolated patches had the lowest shoot densities, which may have allowed predators to easily find tethered crabs. Very small isolated patches had the highest shoot densities and consequently a high abundance of predators (=juvenile conspecifics). Though shoot density did not differ between the edge and the interior of patches, crabs were more abundant in the interior of patches than at the edge. These results indicate that seagrass fragmentation does not have an overriding influence on juvenile blue crab survival and density, and that crab cannibalism and seasonal changes in landscape structure may influence relationships between crab survival and seagrass habitat structure. Habitat fragmentation, structural complexity, faunal density, and time all must be incorporated into future studies on faunal survival in seagrass landscapes.  相似文献   

4.
A survey of epibenthic prosobranch gastropods was undertaken in both seagrass and hard substratum (coral or old reef rock) habitats on opposite sides of the Florida Keys (Florida Bay and Hawk Channel) to compare faunal differences attributable to differences in the above two habitats and environments. Additionally, two data sets (26 continuous months) of daytime dissolved oxygen, surface salinity and water temperature from Florida Bay (Long Key) and Hawk Channel (Key Largo) environments were compared to determine differences that might constitute environmental stresses likely to affect the fauna. The above data were collected to determine if several hypotheses concerning effects of stress on organisms, assemblage, community and faunal composition were consistent with data on assemblage structure. These hypotheses were that: (1) stress should reduce the average size of organisms; (2) shorten food chains; (3) reduce predation intensity; (4) reduce species richness and diversity; and (5) increase the relative abundance of predator-susceptible ancestral species (i.e. Archaegastropoda). Water quality data suggest that the two most likely forms of stress in deeper (>1 m) areas of Florida Bay adjacent to the Keys are cold water temperatures associated with winter cold fronts and low predawn oxygen associated with warm summer temperatures, high salinity, and periodic algal and seagrass drift buildups. Seagrass sites had high population densities and low diversity due to the dominance of Astraea americana Gmelin (American star shell) in Florida Bay and Modulus modulus L. in Hawk Channel seagrass habitats. Florida Bay sites had high species richness on a small spatial scale, but Hawk Channel sites had more species and greater encounter rates of new species on a larger scale. Predawn oxygen measurements taken during July in four habitats were positively correlated with prosobranch species richness and diversity. Faunal data, analysed on a population density basis, fit the above hypotheses of body size, trophic level, and evolutionary age of the species. Attempts to measure predation on an experimental prosobranch (A. americana) were unsuccessful but a tethering experiment with a sea urchin (Echinometra lucunter L.) indicated higher predation in the less stressful Hawk Channel than Florida Bay hard substratum sites. Stress appears to reduce the abundance of higher trophic levels (both prosobranch and finfish predators) resulting in the dominance of ancestral forms not adapted to predation but tolerant of environmental stress. Eutrophication or increased oxygen demands in Florida Bay could result in further species richness and diversity declines.  相似文献   

5.
Seagrass specialists in the Red Sea Seagrass meadows play important ecological and environmental roles. The high level of productivity, complex structure and rich diversity allows a lot of organisms to seek shelter, feed and use seagrass habitats as nursery ground. Several species show highly specialized adaptations to the seagrass environment. This article presents a selection of seagrass specialists in the Red Sea using different survival strategies like symbiosis, mimicry or camouflage.  相似文献   

6.
Seagrass meadows are habitat for an abundance and diversity of animal life, and their continuing global loss has focused effort on their restoration. This restoration not only aims to re‐establish the structure of the seagrass, but also to restore its function, particularly as habitat. The success of seagrass restoration is typically measured by the recovery of aboveground structure, but this ignores the important role of the belowground component of seagrass ecosystems, which may not recover at the same rate, and is equally important for faunal communities. We quantify infaunal communities (abundance, richness, and composition) within expanding plots of restored seagrass, and relate their change to the recovery of belowground seagrass biomass and sediment properties. We found that infaunal abundance and composition converged on that found in natural seagrass within 2 years, while the overall infaunal richness was not affected by habitat. The carbon content of surface sediments also recovered within 2 years, although recovery of belowground biomass and sediment grain size took 4 to 6 years. These results suggest that the structure of recovering seagrass habitats may not need to attain that of natural meadows before they support infauna that is comparable to natural communities. This pace and effectiveness of recovery provides some optimism for future seagrass restoration.  相似文献   

7.
Eliza C. Moore  Kevin A. Hovel 《Oikos》2010,119(8):1299-1311
Habitat structure at many scales influences faunal communities. Although habitat structure at different scales often covaries, studies rarely examine the relative effects of structure at multiple scales on faunal density and diversity. In shallow‐water seagrass systems, epifaunal density at local scales generally increases with increased habitat structural complexity (e.g. shoot density per unit area). In turn, structural complexity often varies with other aspects of habitat structure at patch scales, such as proximity to patch edges, which itself modifies ecological processes that structure epifaunal communities. We conducted surveys and a manipulative experiment in the eelgrass Zostera marina beds of San Diego Bay, California, USA, to determine (1) whether eelgrass structural complexity, epifaunal density and diversity, and fish (predator) density and diversity vary with proximity to patch edges, and (2) the relative influences of structural complexity, proximity to patch edges and predator presence on epifaunal distribution. Seagrass structural complexity generally increased from patch edges to patch interiors at all sites and in all sampling periods. However, patterns of epifaunal density, diversity, and biomass varied among sites and sampling periods, with density and biomass increasing from patch edges to interiors at some sites and decreasing at others. In the manipulative experiment, we allowed epifauna to colonize sparse or dense artificial seagrass habitat at both the edge and interior of a seagrass patch, and enclosed a subset of experimental units in predator exclusion cages. Overall, proximity to patch edges had a larger influence on epifaunal density and community structure than did structural complexity or predation, with the exception of some common taxa which responded more strongly to either complexity or predator exclusion. Our results emphasize the importance of addressing and evaluating habitat structure at multiple scales to better understand the distribution and interactions of organisms in a particular environment.  相似文献   

8.
Seagrass habitats worldwide are degrading and becoming fragmented, threatening the important ecosystem services they provide. Fauna associated with seagrasses, particularly cryptic species, are expected to respond to these changes, but are difficult to detect at ecologically meaningful scales using non-extractive techniques. We used a small, wide-angle camera (GoPro) and a small quantity of bait positioned within the canopy of Posidonia australis meadows in Jervis Bay, New South Wales to assess the response of fishes to seagrass cover. We saw a clear positive relationship with the condition of P. australis; a high cover of this seagrass had positive effects on the diversity and abundance of cryptic fauna. Our findings highlight ecosystem shifts associated with the loss and fragmentation of biogenic habitat. These changes are of particular relevance for P. australis meadows given their current status as an endangered ecological community in several locations in NSW and their slow rate of recovery from disturbance.  相似文献   

9.
海草生态学研究进展   总被引:12,自引:3,他引:9  
韩秋影  施平 《生态学报》2008,28(11):5561-5570
海草床生态系统是生物圈中最具生产力的水生生态系统之一,具有重要的生态系统服务功能。作者根据海草生态学及相关领域的最新研究进展,对世界范围内海草床的空间分布、海草床的生态系统服务功能以及外界因素对海草床的影响等研究进展进行了综述。海草床生态系统服务功能主要包括净化水质、护堤减灾、提供栖息地和生态系统营养循环等。对海草床影响较大的外界环境因素包括盐度、温度、营养盐、光照、其他动物摄食、人类活动和气候变化等。海草普查、海草生态功能研究,影响海草床的主要环境因素,海草修复研究等将是我国海草研究的主要方向。  相似文献   

10.
海草床是近岸海域中生产力极高的生态系统,是许多海洋水生动物的重要育幼场所。从生物幼体的密度、生长率、存活率和生境迁移4个方面阐述海草床育幼功能,并从食源和捕食压力两个方面探讨海草床育幼功能机理。许多生物幼体在海草床都呈现出较高的密度、生长率和存活率,并且在个体发育到一定阶段从海草床向成体栖息环境迁移。丰富的食物来源或较低的捕食压力可能是海草床具有育幼功能的主要原因,但不同的生物幼体对海草床的利用有差异,海草床育幼功能的机理在不同环境条件下也存在差异。提出未来海草床育幼功能的重点研究方向:(1)量化海草床对成体栖息环境贡献量;(2)全球气候变化和人类活动对海草床育幼功能的影响;(3)海草床育幼功能对海草床斑块效应和边缘效应的响应,以期为促进我国海草床育幼研究和海草床生态系统保护提供依据。  相似文献   

11.
Seagrass habitat structure influences epifaunal density, diversity, community composition and survival, but covariation of structural elements at multiple scales (e.g., shoot density or biomass per unit area, patch size, and patch configuration) can confound studies attempting to correlate habitat structure with ecological patterns and processes. In this study, we standardized simulated seagrass shoot density and bed area among artificial seagrass beds in San Diego Bay, California, USA to evaluate the singular effect of seagrass bed configuration (“patchiness”) on the density and diversity of seagrass epifauna. Artificial seagrass beds all were 1 m2, but were composed of a single large patch (“continuous” treatment), four smaller patches (“patchy” treatment), or 16 very small patches (“very patchy” treatment). We allowed epifauna to colonize beds for 1 month, and then sampled beds monthly over the next 3 months. Effects of seagrass bed patchiness on total epifaunal density and species-specific densities were highly variable among sampling dates, and there was no general trend for the effects of fragmentation on epifaunal densities to be positive or negative. Epifaunal diversity (measured as Simpson's index of diversity) was highest in very patchy or patchy beds on two out of the three sampling dates. Very patchy beds exhibited the highest dissimilarity in community composition in the first two sampling periods (August and September), but patchy beds exhibited the highest dissimilarity in the third sampling period (October). Our results indicate that seagrass patch configuration affects patterns of epifaunal density, diversity, and community composition in the absence of covarying bed area or structural complexity, and that patchy seagrass beds may be no less valuable as a habitat than are continuous seagrass beds. The spatial pattern employed when harvesting or planting seagrass may influence epifaunal habitat use and should be a key consideration in restoration plans.  相似文献   

12.
We examine the effects of different biogeographic histories on assemblage composition in three major marine habitats in two biogeographically distinct marine realms. Specifically, we quantify the taxonomic and functional composition of fish assemblages that characterise coral reef, seagrass and mangrove habitats, to explore the potential effects of biogeographic history and environment on assemblage composition. The three habitats were surveyed in the Caribbean and on the Great Barrier Reef using a standardised underwater visual census method to record fish size and abundance data. The taxonomic composition of assemblages followed biogeographic expectations, with realm‐specific family‐level compositions. In marked contrast, the functional composition of assemblages separated habitats regardless of their biogeographic locations. In essence, taxonomy characterises biogeographic realms while functional groups characterise habitats. The Caribbean and Indo‐West Pacific have been separated for approximately 15 million years. The two realms have different taxonomic structures which reflect this extended separation, however, the three dominant shallow‐water marine habitats all retain distinct functional characteristics: seagrass fishes are functionally similar regardless of their taxonomic composition or biogeographic location. Likewise, for coral reefs and mangroves. The results emphasise the advantages and limitations of taxonomic vs. functional metrics in evaluating patterns. Taxonomy primarily reflects biogeographic and evolutionary history while functional characteristics may better reflect ecological constraints.  相似文献   

13.
The importance of seagrass canopy to associated fauna was assessed by comparing the species richness, abundance and diversity of the epi- and infaunal macroinvertebrate assemblages in a seagrass (Zostera japonica Ascherson and Graebner) bed and the adjacent unvegetated area in Hong Kong. Seagrass cover had significant effects on the composition and abundance of the associated fauna and the amount of detritus accumulated on the sediment surface. Detritus abundance was significantly higher in the seagrass bed, and was positively correlated with both the above- and belowground biomass of Z. japonica. Both the abundance and species richness of the epi- and infauna were significantly positively correlated with the belowground biomass of the seagrass and detritus standing crop. Macrofaunal species richness was higher (118) in the seagrass bed than the adjacent unvegetated areas (70), with a higher degree of similarity between the infauna than the epifauna of the two habitats. While all species recorded from the unvegetated areas were found in the seagrass bed, 48 species occurred only in the seagrass-covered areas. Species richness of epifauna was significantly higher in the seagrass bed, but there was no difference between infaunal species of the two habitats. On the contrary, faunal (epi- and infauna) abundance was significantly higher in seagrass areas. The seagrass bed also supported species of small tellinid bivalves previously not recorded from Hong Kong. Artificial seagrass units (ASUs, 0.2 m(2)) with four combinations of leaf density and leaf length and a control (bare sand) were placed at short distances from natural patches of Z. japonica. The composition, abundance and biomass of the epibenthos associated with the ASUs and the control were recorded after 3 months in the field. While species richness did not differ among the treatments, total abundance of epibenthos was significantly higher in the high density-long leaves (HL) treatment than in the control. Results of a discriminant analysis using log-transformed abundance data suggest that the gastropod Clithon oualaniensis, the mussel Musculista senhousia and the crab Thalamita sp. were important species distinguishing the assemblages in the various treatments. All the three species were significantly more abundant in the HL treatment than in the low density-short leaves (LS) treatment and the control. By contrast, there was no significant difference in the biomass of the epifauna, but discriminant analysis again separated the five treatments based on the composition of the biomass, with the same three species identified as the most important discriminating species. The species richness and abundance of the epifauna associated with the ASUs were similar to the adjacent unvegetated areas, but significantly lower than in the Zostera patches. The physical canopy structure of Z. japonica beds increased the abundance of the epibenthos, potentially through provision of canopy and indirectly through trapping of detritus.  相似文献   

14.
The benthic fauna and diel variation in a shallow seagrass bed (Thalassia testudinum) were studied in Playa Mero, Venezuela. Samples of organisms and sediments were taken using PVC cylinders, 5cm in diameter, along a transect perpendicular to the coast. Seagrass cover, shoot density and biomass were estimated. The seagrass cover was homogeneous along the transect. The intermediate zone had the highest number of shoots and of above-ground and rhizome biomass. Composition and abundance of benthic organisms were related with seagrass and sediment characteristics. Sediment organic matter content and organism abundance were highest near the shore Molluscs, polychaetes, oligochaetes and nematodes were the most abundant groups. Species richness was higher in daytime (40 versus 28 at night). Gastropods were the most abundant organisms both at day and night while polychaetes and crustaceans increased during the day, and holoturids were more numerous at night.  相似文献   

15.
It is well known that ecological processes such as population regulation and natural enemy interactions potentially occur over a range of spatial scales, and there is a substantial body of literature developing theoretical understanding of the interplay between these processes. However, there are comparatively few studies quantifying the long-term effects of spatial scaling in natural ecosystems. A key challenge is that trophic complexity in real-world biological communities quickly obscures the signal from a focal process. Seagrass meadows provide an excellent opportunity in this respect: in many instances, seagrasses effectively form extensive natural monocultures, in which hypotheses about endogenous dynamics can be formulated and tested. We present amongst the longest unbroken, spatially explict time series of seagrass abundance published to date. Data include annual measures of shoot density, total above-ground abundance, and associated epiphyte cover from five Zostera marina meadows distributed around the Isles of Scilly, UK, from 1996 to 2011. We explore empirical patterns at the local and metapopulation scale using standard time series analysis and develop a simple population dynamic model, testing the hypothesis that both local and metapopulation scale feedback processes are important. We find little evidence of an interaction between scales in seagrass dynamics but that both scales contribute approximately equally to observed local epiphyte abundance. By quantifying the long-term dynamics of seagrass-epiphyte interactions we show how measures of density and extent are both important in establishing baseline information relevant to predicting responses to environmental change and developing management plans. We hope that this study complements existing mechanistic studies of physiology, genetics and productivity in seagrass, whilst highlighting the potential of seagrass as a model ecosystem. More generally, this study provides a rare opportunity to test some of the predictions of ecological theory in a natural ecosystem of global conservation and economic value.  相似文献   

16.
Few field studies have investigated how changes at one trophic level can affect the invasibility of other trophic levels. We examined the hypothesis that the spread of an introduced alga in disturbed seagrass beds with degraded canopies depends on the depletion of large consumers. We mimicked the degradation of seagrass canopies by clipping shoot density and reducing leaf length, simulating natural and anthropogenic stressors such as fish overgrazing and water quality. Caulerpa racemosa was transplanted into each plot and large consumers were excluded from half of them using cages. Potential cage artifacts were assessed by measuring irradiance, scouring by leaf movement, water flow, and sedimentation. Algal invasion of the seagrass bed differed based on the size of consumers. The alga had higher cover and size under the cages, where the seagrass was characterized by reduced shoot density and canopy height. Furthermore, canopy height had a significant effect depending on canopy density. The alteration of seagrass canopies increased the spread of C. racemosa only when large consumers were absent. Our results suggest that protecting declining habitats and/or restoring fish populations will limit the expansion of C. racemosa. Because MPAs also enhance the abundance and size of fish consuming seagrass they can indirectly promote algal invasion. The effects of MPAs on invasive species are context dependent and require balancing opposing forces, such as the conservation of seagrass canopy structure and the protection of fish grazing the seagrass.  相似文献   

17.
Grassland birds are among the most globally threatened bird groups due to substantial degradation of native grassland habitats. However, the current network of grassland conservation areas may not be adequate for halting population declines and biodiversity loss. Here, we evaluate a network of grassland conservation areas within Wisconsin, U.S.A., that includes both large Focal Landscapes and smaller targeted conservation areas (e.g., Grassland Bird Conservation Areas, GBCAs) established within them. To date, this conservation network has lacked baseline information to assess whether the current placement of these conservation areas aligns with population hot spots of grassland‐dependent taxa. To do so, we fitted data from thousands of avian point‐count surveys collected by citizen scientists as part of Wisconsin''s Breeding Bird Atlas II with multinomial N‐mixture models to estimate habitat–abundance relationships, develop spatially explicit predictions of abundance, and establish ecological baselines within priority conservation areas for a suite of obligate grassland songbirds. Next, we developed spatial randomization tests to evaluate the placement of this conservation network relative to randomly placed conservation networks. Overall, less than 20% of species statewide populations were found within the current grassland conservation network. Spatial tests demonstrated a high representation of this bird assemblage within the entire conservation network, but with a bias toward birds associated with moderately tallgrasses relative to those associated with shortgrasses or tallgrasses. We also found that GBCAs had higher representation at Focal Landscape rather than statewide scales. Here, we demonstrated how combining citizen science data with hierarchical modeling is a powerful tool for estimating ecological baselines and conducting large‐scale evaluations of an existing conservation network for multiple grassland birds. Our flexible spatial randomization approach offers the potential to be applied to other protected area networks and serves as a complementary tool for conservation planning efforts globally.  相似文献   

18.
Algae growing as epiphytes on leaves of Thalassia hemprichii (Ehrenb.) Aschers. have been studied from November 1980 to December 1981, in the Port Moresby area, Papua New Guinea. The epiphytic communities of 3 different monospecific seagrass meadows are compared for species richness, abundance and temporal pattern. Seagrass shoots were studied separately, using the method of Braun—Blanquet, as adapted by Boudouresque. By differentiating between the leaves of one single shoot, the inner- and outer-face of each leaf and the upper- and lower-part of each leaf, the epiphytic community was studied from its initial colonization (Leaf 1) to the final “climax” situation (Leaf 4). The diversity and abundance were strongly related to the age of the seagrass leaves. The Rhodophyta were best represented, with the Cryptonemiales dominating the community quantitatively; the Ceramiales predominated qualitatively. The Phaeophyta were negligible in terms of abundance and diversity. Differences between the 3 study sites are presented.  相似文献   

19.
Seagrass ecosystems have suffered significant declines globally and focus is shifting to restoration efforts. A key component to successful restoration is an understanding of the genetic factors potentially influencing restoration success. This includes understanding levels of connectivity between restoration locations and neighboring seagrass populations that promote natural recovery (source and sink populations), the identification of potential donor populations, and assessment of genetic diversity of restored meadows and material used for restoration. In this study, we carry out genetic surveys of 352 individuals from 13 populations using 11 polymorphic microsatellite loci to inform seagrass restoration activities by: (1) understanding levels of genetic and genotypic diversity within meadows; and (2) understanding genetic structure and patterns of connectivity among these meadows to determine which source sites may be most appropriate to assist recovery of three restoration sites. The study identified high genotypic diversity within the locations analyzed from the Port of Gladstone and Rodd's Bay region, indicating sexual reproduction is important in maintaining populations. Overall, we detected significant genetic structuring among sites with the Bayesian structure analysis identifying genetic clusters that largely conformed to a northern, central, and southern region. This suggests limited gene flow between regions, although there does appear to be some connectivity within regions. The hydrodynamic models showed that seeds were largely locally retained, while fragments were more widely dispersed. Limited gene flow between regions suggests donor material for restoration should be sourced locally where possible.  相似文献   

20.
海草是生长在潮间带和潮下带的单子叶植物,由海草植物组成的海草床是生态系统服务价值最高的生态系统之一.然而,近几十年人类活动干扰、全球气候变化等因素导致海草床衰退严重.海菖蒲是分布于热带、体型最大的雌雄异株海草,我国位于该物种的分布北缘,本文对其克隆多样性和遗传结构进行研究,以期为该海草的保护提供参考.采用4对多态微卫星标记对采自海南岛4个地点的现存海菖蒲种群的样品进行基因型分型.结果表明:海菖蒲种群克隆多样性和遗传多样性较低,这与所研究种群处于分布区北缘有关;种群间遗传分化值范围较大(0.073~0.309),这可能是由于分布于不同港湾的种群间距离范围较大以及局域绝灭/再拓殖的遗传漂变效应所致;各种群未发现近期经历种群瓶颈的信号,很可能是由于种群内遗传多样性已经很低,种群减小未能导致遗传多样性明显降低.根据种群遗传特征,提出了重点保护种群的建议,鉴于目前我国海菖蒲等海草快速衰退的局面,应强化海草保护并实施海草床生态恢复.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号