首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleistocene climatic oscillations have played an important role in shaping many species’ current distributions. In recent years, there has been increasing interest in studying the effects of glacial periods on East Asian birds. Integrated approaches allow us to study past distribution range changes due to Pleistocene glaciation, and how these changes have affected current population genetic structure, especially for species with unusual distribution patterns. The Wuyi disjunction is the disjunct distribution of birds between the Wuyi Mountains in south‐eastern China and south‐western China. Although several species exhibit the Wuyi disjunction, the process behind this unusual distribution pattern has remained relatively unstudied. Therefore, we used the Chestnut‐vented Nuthatch Sitta nagaensis as a model species to investigate the possible causes of the Wuyi disjunction. Based on phylogenetic analyses with three mitochondrial and six nuclear regions, the Wuyi population of the Chestnut‐vented Nuthatch was closely related to populations in mid‐Sichuan, from which it diverged approximately 0.1 million years ago, despite the long geographical distance between them (over 1,300 km). In contrast, geographically close populations in mid‐ and southern Sichuan were genetically divergent from each other (more than half a million years). Ecological niche modelling suggested that the Chestnut‐vented Nuthatch has experienced dramatic range expansions from Last Interglacial period to Last Glacial Maximum, with some range retraction following the Last Glacial period. We propose that the Wuyi disjunction of the Chestnut‐vented Nuthatch was most likely due to recent range expansion from south‐western China during the glacial period, followed by postglacial range retraction.  相似文献   

2.
3.
East Asia has the most diverse temperate flora in the world primarily due to the lack of Pleistocene glaciation and the geographic heterogeneity. Although increasing phylogeography studies in this region provided more proofs in this issue, discrepancies and uncertainty still exist, especially in northern temperate deciduous broad‐leaved and coniferous mixed forest region (II). And a widespread plant species could reduce the complexity to infer the relationship between diversity and physiographical pattern. Hence, we studied the evolution history of a widespread temperate tree, Acer mono, populations in region II and the influence of physiographic patterns on intraspecific genetic diversity. Analyses of chloroplast sequences and nuclear microsatellites indicated high levels of genetic diversity. The diversity distribution was spatially heterogeneous and a latitudinal cline existed in both markers. The spatial distribution pattern between genetic diversity within A. mono and the diversity at species level was generally consistent. Western subtropical evergreen broad‐leaved forest subregion (IVb) had a unique ancient chloroplast clade (CP3) and a nuclear gene pool (GP5) with dominance indicating the critical role of this area in species diversification. Genetic data and ecological niche model results both suggested that populations in region II disappeared during the last glacial maximum (LGM) and recovered from south of Changbai Mt. and the Korean Peninsula. Two distribution centers were likely during the LGM, one in the north edge of warm temperate deciduous broad‐leaved forest region (III) and another in the south edge of region III. This was reflected by the genetic pattern with two spatially independent genetic groups. This study highlights the key role of region III in sustaining genetic diversity in the northern range and connecting diversity between southern and northern range. We elucidated the diversity relationship between vegetation regions which could facilitate the understanding of biodiversity origin and maintenance in East Asia.  相似文献   

4.
Understanding the way in which the climatic oscillations of the Quaternary Period have shaped the distribution and genetic structure of extant tree species provides insight into the processes driving species diversification, distribution and survival. Deciphering the genetic consequences of past climatic change is also critical for the conservation and sustainable management of forest and tree genetic resources, a timely endeavour as the Earth heads into a period of fast climate change. We used a combination of genetic data and ecological niche models to investigate the historical patterns of biogeographic range expansion of a wild fruit tree, the European crabapple (Malus sylvestris), a wild contributor to the domesticated apple. Both climatic predictions for the last glacial maximum and analyses of microsatellite variation indicated that M. sylvestris experienced range contraction and fragmentation. Bayesian clustering analyses revealed a clear pattern of genetic structure, with one genetic cluster spanning a large area in Western Europe and two other genetic clusters with a more limited distribution range in Eastern Europe, one around the Carpathian Mountains and the other restricted to the Balkan Peninsula. Approximate Bayesian computation appeared to be a powerful technique for inferring the history of these clusters, supporting a scenario of simultaneous differentiation of three separate glacial refugia. Admixture between these three populations was found in their suture zones. A weak isolation by distance pattern was detected within each population, indicating a high extent of historical gene flow for the European crabapple.  相似文献   

5.
Given that East Asia is located south‐west of Beringia and was less glaciated during the Pleistocene, species at higher latitudes were able to expand their range in this region during climate cooling. Although southward migration is an inevitable colonization process, the biogeographical history of the disjunct ranges of higher‐latitude species in East Asia has been investigated less extensively. Here, we assess whether their disjunct distributions in the Japanese archipelago connected sufficiently with Beringia or persisted in isolation following their establishment. Sequences of nine nuclear loci were determined for Cassiope lycopodioides (Ericaceae) from the Japanese archipelago as well as its surrounding areas, Kamchatka and Alaska. According to the geographical pattern of genetic diversity, the northern populations from Kamchatka to the northern part of the Japanese archipelago were similar genetically and were differentiated from populations in central Japan. Our study suggested that the distribution of C. lycopodioides was connected between the northern part of the Japanese archipelago and south‐western Beringia due to Pleistocene climate cooling. Conversely, central Japan harboured a disjunct range after its establishment. These inferences suggest that widespread range expansion in northern East Asia was plausible for species distributed in Beringia. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 497–509.  相似文献   

6.
Climate oscillations have left a significant impact on the patterns of genetic diversity observed in numerous taxa. In this study, we examine the effect of Quaternary climate instability on population genetic variability of a bumble bee pollinator species, Bombus huntii in western North America. Pleistocene and contemporary B. huntii habitat suitability (HS) was estimated with an environmental niche model (ENM) by associating 1,035 locality records with 10 bioclimatic variables. To estimate genetic variability, we genotyped 380 individuals from 33 localities at 13 microsatellite loci. Bayesian inference was used to examine population structure with and without a priori specification of geographic locality. We compared isolation by distance (IBD) and isolation by resistance (IBR) models to examine population differentiation within and among the Bayesian inferred genetic clusters. Furthermore, we tested for the effect of environmental niche stability (ENS) on population genetic diversity with linear regression. As predicted, high‐latitude B. huntii habitats exhibit low ENS when compared to low‐latitude habitats. Two major genetic clusters of B. huntii inhabit western North America: (a) a north genetic cluster predominantly distributed north of 28°N and (b) a south genetic cluster distributed south of 28°N. In the south genetic cluser, both IBD and IBR models are significant. However, in the north genetic cluster, IBD is significant but not IBR. Furthermore, the IBR models suggest that low‐latitude montane populations are surrounded by habitat with low HS, possibly limiting dispersal, and ultimately gene flow between populations. Finally, we detected high genetic diversity across populations in regions that have been climatically unstable since the last glacial maximum (LGM), and low genetic diversity across populations in regions that have been climatically stable since the LGM. Understanding how species have responded to climate change has the potential to inform management and conservation decisions of both ecological and economic concerns.  相似文献   

7.
Li T  Zhang M  Qu Y  Ren Z  Zhang J  Guo Y  Heong KL  Villareal B  Zhong Y  Ma E 《Genetica》2011,139(4):511-524
The rice grasshopper, Oxya hyla intricata, is a rice pest in Southeast Asia. In this study, population genetic diversity and structure of this Oxya species was examined using both DNA sequences and AFLP technology. The samples of 12 populations were collected from four Southeast Asian countries, among which 175 individuals were analysed using mitochondrial DNA cytochrome c oxidase subunit I (COI) sequences, and 232 individuals were examined using amplified fragment length polymorphisms (AFLP) to test whether the phylogeographical pattern and population genetics of this species are related to past geological events and/or climatic oscillations. No obvious trend of genetic diversity was found along a latitude/longitude gradient among different geographical groups. Phylogenetic analysis indicated three deep monophyletic clades that approximately correspond to three geographical regions separated by high mountains and a deep strait, and TCS analysis also revealed three disconnected networks, suggesting that spatial and temporal separations by vicariance, which were also supported by AMOVA as a source of the molecular variance presented among groups. Gene flow analysis showed that there had been frequent historical gene flow among local populations in different regions, but the networks exhibited no shared haplotype among populations. In conclusion, the past geological events and climatic fluctuations are the most important factor on the phylogeographical structure and genetic patterns of O. hyla intricata in Southeast Asia. Habitat, vegetation, and anthropogenic effect may also contribute to gene flow and introgression of this species. Moreover, temperature, abundant rainfall and a diversity of graminaceous species are beneficial for the migration of O. hyla intricata. High haplotype diversity, deep phylogenetic division, negative Fu’s F s values and unimodal and multimodal distribution shapes all suggest a complicated demographic expansion pattern of these O. hyla intricata populations, which might have been caused by climatic oscillations during glacial periods in the Quaternary.  相似文献   

8.
The importance of long‐distance migration from low to high latitudes relative to local spread from northern refugia after the Last Glacial Maximum (LGM) remains a focus of debate for many temperate tree species. We assessed the dynamics of Chinese pine Pinus tabulaeformis, a widespread species endemic to northern China, since the LGM by integrating cytoplasmic DNA data, mapped pollen records and ecological niche modeling. Genetic variation among 544 individuals from 50 populations spanning the entire natural species range revealed eight genetic clusters with distinct geographic distribution, indicating glacial lineages likely originating from multiple local microrefugia. Palynological evidence suggested that the northernmost part of the natural distribution originated from local postglacial spread. Niche modeling indicated high probability of the species being present in the area of the Loess Plateau and coastal areas north of the Yangtze River during the LGM. The three lines of evidence jointly suggest that the species persisted through the last glaciation in the mountains surrounding the Loess Plateau of northern China and that the current distribution of the species originated primarily from the spread of local refugial populations, instead of long‐distance migration. These results cast doubt on the notion that Chinese pine migrated from areas south of the Yangtze River and underscore the importance of northern refugia.  相似文献   

9.
The biogeographical relationships between far-separated populations, in particular, those in the mainland and islands, remain unclear for widespread species in eastern Asia where the current distribution of plants was greatly influenced by the Quaternary climate. Deciduous Oriental oak (Quercus variabilis) is one of the most widely distributed species in eastern Asia. In this study, leaf material of 528 Q. variabilis trees from 50 populations across the whole distribution (Mainland China, Korea Peninsular as well as Japan, Zhoushan and Taiwan Islands) was collected, and three cpDNA intergenic spacer fragments were sequenced using universal primers. A total of 26 haplotypes were detected, and it showed a weak phylogeographical structure in eastern Asia populations at species level, however, in the central-eastern region of Mainland China, the populations had more haplotypes than those in other regions, with a significant phylogeographical structure (N ST = 0.751> G ST = 0.690, P<0.05). Q. variabilis displayed high interpopulation and low intrapopulation genetic diversity across the distribution range. Both unimodal mismatch distribution and significant negative Fu’s FS indicated a demographic expansion of Q. variabilis populations in East Asia. A fossil calibrated phylogenetic tree showed a rapid speciation during Pleistocene, with a population augment occurred in Middle Pleistocene. Both diversity patterns and ecological niche modelling indicated there could be multiple glacial refugia and possible bottleneck or founder effects occurred in the southern Japan. We dated major spatial expansion of Q. variabilis population in eastern Asia to the last glacial cycle(s), a period with sea-level fluctuations and land bridges in East China Sea as possible dispersal corridors. This study showed that geographical heterogeneity combined with climate and sea-level changes have shaped the genetic structure of this wide-ranging tree species in East Asia.  相似文献   

10.
Phylogeographical studies are common in boreal and temperate species from the Palaearctic, but scarce in arid‐adapted species. We used nuclear and mitochondrial markers to investigate phylogeography and to estimate chronology of colonization events of the trumpeter finch Bucanetes githagineus, an arid‐adapted bird. We used 271 samples from 16 populations, most of which were fresh samples but including some museum specimens. Microsatellite data showed no clear grouping according to the sampling locations. Microsatellite and mitochondrial data showed the clearest differentiation between Maghreb and Canary Islands and between Maghreb and Western Sahara. Mitochondrial data suggest differentiation between different Maghreb populations and among Maghreb and Near East populations, between Iberian Peninsula and Canary Islands, as well as between Western Sahara and Maghreb. Our coalescence analyses indicate that the trumpeter finch colonized North Africa during the humid Marine Isotope Stage 5 (MIS5) period of the Sahara region 125 000 years ago. We constructed an ecological niche model (ENM) to estimate the geographical distribution of climatically suitable habitats for the trumpeter finch. We tested whether changes in the species range in relation to glacial–interglacial cycles could be responsible for observed patterns of genetic diversity and structure. Modelling results matched with those from genetic data as the species' potential range increases in interglacial scenarios (in the present climatic scenario and during MIS5) and decreases in glacial climates (during the last glacial maximum, LGM, 21 000 years ago). Our results suggest that the trumpeter finch responded to Pleistocene climatic changes by expanding and contracting its range.  相似文献   

11.
Hotspots of intraspecific genetic diversity, which are of primary importance for the conservation of species, have been associated with glacial refugia, that is areas where species survived the Quaternary climatic oscillations. However, the proximate mechanisms generating these hotspots remain an open issue. Hotspots may reflect the long‐term persistence of large refugial populations; alternatively, they may result from allopatric differentiation between small and isolated populations, that later admixed. Here, we test these two scenarios in a widely distributed species of tree frog, Hyla orientalis, which inhabits Asia Minor and southeastern Europe. We apply a fine‐scale phylogeographic survey, combining fast‐evolving mitochondrial and nuclear markers, with a dense sampling throughout the range, as well as ecological niche modelling, to understand what shaped the genetic variation of this species. We documented an important diversity centre around the Black Sea, composed of multiple allopatric and/or parapatric diversifications, likely driven by a combination of Pleistocene climatic fluctuations and complex regional topography. Remarkably, this diversification forms a ring around the Black Sea, from the Caucasus through Anatolia and eastern Europe, with terminal forms coming into contact and partially admixing in Crimea. Our results support the view that glacial refugia generate rather than host genetic diversity and can also function as evolutionary melting pots of biodiversity. Moreover, we report a new case of ring diversification, triggered by a large, yet cohesive dispersal barrier, a very rare situation in nature. Finally, we emphasize the Black Sea region as an important centre of intraspecific diversity in the Palearctic with implications for conservation.  相似文献   

12.
Aim The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post‐glacial history of this species during the Holocene. Location Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier’s algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species’ extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north–south along Honshu. Given that this tree species is cold‐adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher‐elevation swamps during warm post‐glacial periods, leading to a reduction of effective population sizes and rare allelic richness.  相似文献   

13.
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.  相似文献   

14.
Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo‐West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier.  相似文献   

15.
This study investigated the Pleistocene history of a semi‐aquatic bug, Microvelia douglasi douglasi Scott, 1874 (Hemiptera: Veliidae) in East Asia. We used M. douglasi douglasi as a model species to explore the effects of historical climatic fluctuations on montane semi‐aquatic invertebrate species. Two hypotheses were developed using ecological niche models (ENMs). First, we hypothesized that M. douglasi douglasi persisted in suitable habitats in southern Guizhou, southern Yunnan, Hainan, Taiwan and southeast China during the LIG. After that, the populations expanded (Hypothesis 1). As the spatial prediction in the LGM was significantly larger than in the LIG, we then hypothesized that the population expanded during the LIG to LGM transition (Hypothesis 2). We tested these hypotheses using mitochondrial data (COI+COII) and nuclear data (ITS1 + 5.8S+ITS2). Young lineages, relatively deep splits, lineage differentiation among mountain ranges in central, south and southwest China and high genetic diversities were observed in these suitable habitats. Evidence of mismatch distributions and neutrality tests indicate that a population expansion occurred in the late Pleistocene. The Bayesian skyline plot (BSP) revealed an unusual population expansion that likely happened during the cooling transition between LIG and LGM. The results of genetic data were mostly consistent with the spatial predictions from ENM, a finding that can profoundly improve phylogeographic research. The ecological requirements of M. douglasi douglasi, together with the geographical heterogeneity and climatic fluctuations of Pleistocene in East Asia, could have shaped this unusual demographic history. Our study contributes to our knowledge of semi‐aquatic bug/invertebrate responses to Pleistocene climatic fluctuations in East Asia.  相似文献   

16.
Past climatic oscillations and complex geodynamic processes had tremendous effects on the current distributions of species in East Asia. Previous studies have revealed that spermatophytes experienced different demographic histories and survived in multiple refuges. However, very few studies involving ferns have been conducted over a large geographical area like East Asia. The monophyletic epiphytic fern genus Lemmaphyllum, which is composed of four species, is widespread in East Asia and offers a good model for exploring how geoclimatic oscillations influence the diversification and demographic history of fern species. We studied the phylogeography of Lemmaphyllum based on 115 populations using plastid sequences and ecological niche modeling. A total of 91 haplotypes were found in Lemmaphyllum. Molecular clock estimation revealed that speciation coincided with the three phases of the Qingzang Movement at beginning of the third uplift of Qinghai-Tibetan Plateau. The “Tanaka-Kaiyong Line” demarcated lineages within L. carnosum. The split of the mainland and island lineages of L. rostratum and L. carnosum var. microphyllum may have resulted from ancestral isolation whereby land-bridges acted as a “barrier” rather than as a “corridor” between mainland and island lineages. Multiple glacial refuges such as Sichuan Basin, Jinggangshan region, YGG region, HDM region, and the islands of the China East Sea during the LGM were revealed. The entities of Lemmaphyllum experienced species-specific demographic histories in response to the Pleistocene climate change. The case study of epiphytic ferns may provide evidences for understanding the migration of evergreen broad-leaf forest under climate oscillation.  相似文献   

17.
Aim Although climatic fluctuations occurred world‐wide during the Pleistocene, the severity of glacial and drought events – and hence their influence on animal and plant biogeography – differed among regions. Many Holarctic species were forced to warmer‐climate refugia during glacial periods, leaving the genetic signature of recent expansion and gene flow among modern‐day populations. Montane south‐eastern Australia experienced less extreme glaciation, but the effects of drier and colder climatic conditions over this period on biotic distributions, and hence on the present‐day genetic structure of animal and plant populations, are poorly known. Location South‐eastern Australia. Methods The endangered Blue Mountains water skink (Eulamprus leuraensis) is a viviparous lizard known from fewer than 40 isolated small swamps at 560–1060 m elevation in south‐eastern Australia. We conducted molecular phylogenetic, dating and population genetics analyses using the mitochondrial NADH dehydrogenase 4 (ND4) of 224 individuals of E. leuraensis sampled across the species’ distribution. Results Ancient divergences in haplotype groups between lizards from the Blue Mountains and the Newnes Plateau, and strong genetic differences, even between swamps separated by only a few kilometres, suggest that the species has persisted as a series of relatively isolated populations within its current distribution for about a million years. Presumably, habitat patches similar to current‐day swamps persisted throughout glacial–interglacial cycles in this region, allowing the development of high levels of genetic structuring within and among present‐day populations. Main conclusions Our results suggest that less extreme glacial conditions occurred in the Southern Hemisphere compared with the Northern Hemisphere, allowing cold‐adapted species (such as E. leuraensis) to persist in montane areas. However, additional studies are needed before we can assemble a comprehensive view of the impact of Pleistocene climatic variation on the phylogeography of Southern Hemisphere taxa.  相似文献   

18.
Aim We examine the range expansion/contraction dynamics during the last glacial cycle of the late‐successional tropical rain forest conifer Podocarpus elatus using a combination of modelling and molecular marker analyses. Specifically, we test whether distributional changes predicted by environmental niche modelling are in agreement with (1) the glacial maximum contractions inferred from the southern fossil record, and (2) population genetic‐based estimates of range disjunctions and demographic dynamics. In addition, we test whether northern and southern ranges are likely to have experienced similar expansion/contraction dynamics. Location Eastern Australian tropical and subtropical rain forests. Methods Environmental niche modelling was completed for three time periods during the last glacial cycle and was interpreted in light of the known palynology. We collected 109 samples from 32 populations across the entire range of P. elatus. Six microsatellite loci and Bayesian coalescence analysis were used to infer population expansion/contraction dynamics, and five sequenced loci (one plastid and four nuclear) were used to quantify genetic structure/diversity. Results Environmental niche modelling suggested that the northern and southern ranges of P. elatus experienced different expansion/contraction dynamics. In the northern range, the habitat suitable for P. elatus persisted in a small refugial area during the Last Glacial Maximum (LGM, 21 ka) and then expanded during the post‐glacial period. Conversely, in the south suitable habitat was widespread during the LGM but subsequently contracted. These differential dynamics were supported by Bayesian analyses of the population genetic data (northern dispersal) and are consistent with the greater genetic diversity in the south compared with the north. A contact zone between the two genetically divergent groups (corresponding to the Macleay Overlap Zone) was supported by environmental niche modelling and molecular analyses. Main conclusions The climatic fluctuations of the Quaternary have differentially impacted the northern and southern ranges of a broadly distributed rain forest tree in Australia. Recurrent contraction/expansion cycles contributed to the genetic distinction between northern and southern distributions of P. elatus. By combining molecular and environmental niche modelling evidence, this unique study undermines the general assumption that broadly distributed species respond in a uniform way to climate change.  相似文献   

19.
The Pleistocene climatic oscillations promoted the diversification in avian species during the last glacial period. The red‐legged partridge (Alectoris rufa, Family Phasianidae) has a large natural distribution extending from the Mediterranean to humid temperate zones. However, the genetic structure for this species is unknown. The present study investigates the phylogeography, genetic structure and demographic history of Arufa across its distribution, employing both mitochondrial DNA control region sequences and nuclear microsatellite loci. Our results propose that this species was greatly affected by Pleistocene glaciations. The mismatch analyses suggest that the current populations resulted from post‐glacial expansion and subsequent differentiation resulting in five diagnosable genetic clusters: Southwestern, Central‐eastern, Northwestern, Balearic and French and Italian. Further, we found evidence of three glacial refugia within the currently recognized Iberian glacial refugium. The intraspecific structure revealed by both maternal and biparental phylogeographic analyses was not resolved in the phylogenetic analyses. Based on all considerations, we recommended that five management units be recognized.  相似文献   

20.
Aim This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location East Asia from the Arctic to tropical regions, an area crossing over 50° of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods East Asia is divided into forty‐five geographical regions. Based on the similarity of their world‐wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50°‐long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10°. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty‐five regional floras. Results Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi‐Pacific tropical, palaeotropical, tropical Asia–tropical Australia, tropical Asia–tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20°N and for c. 0% at latitude 55–60°N. In contrast, temperate genera (including holarctic, eastern Asia–North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55–60°N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55–60°N, where it levelled off northward. In general, the genera present in a more northerly flora are a subset of the genera present in a more southerly flora. Main conclusions The large‐scale patterns of phytogeography in East Asia are strongly related to latitude, which covaries with several climatic variables such as temperature. Evolutionary processes such as the adaptation of plants to cold climates and current and past land connections are likely responsible for the observed latitudinal patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号