首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

2.
Data on hundreds or thousands of single nucleotide polymorphisms (SNPs) provide detailed information about the relationships between individuals, but currently few tools can turn this information into a multigenerational pedigree. I present the r package sequoia , which assigns parents, clusters half‐siblings sharing an unsampled parent and assigns grandparents to half‐sibships. Assignments are made after consideration of the likelihoods of all possible first‐, second‐ and third‐degree relationships between the focal individuals, as well as the traditional alternative of being unrelated. This careful exploration of the local likelihood surface is implemented in a fast, heuristic hill‐climbing algorithm. Distinction between the various categories of second‐degree relatives is possible when likelihoods are calculated conditional on at least one parent of each focal individual. Performance was tested on simulated data sets with realistic genotyping error rate and missingness, based on three different large pedigrees (= 1000–2000). This included a complex pedigree with overlapping generations, occasional close inbreeding and some unknown birth years. Parentage assignment was highly accurate down to about 100 independent SNPs (error rate <0.1%) and fast (<1 min) as most pairs can be excluded from being parent–offspring based on opposite homozygosity. For full pedigree reconstruction, 40% of parents were assumed nongenotyped. Reconstruction resulted in low error rates (<0.3%), high assignment rates (>99%) in limited computation time (typically <1 h) when at least 200 independent SNPs were used. In three empirical data sets, relatedness estimated from the inferred pedigree was strongly correlated to genomic relatedness.  相似文献   

3.
Ecological and social factors underpinning the inequality of male mating success in animal societies can be related to sex ratio, sexual conflict between breeders, effects of nonbreeders, resource dispersion, climatic conditions, and the various sequential stages of mating competition that constitute the sexual selection process. Here, we conducted an individual‐based study to investigate how local resource availability and demography interact with annual climate conditions to determine the degree of male mating inequality, and thus opportunity for sexual selection across two sequential reproductive episodes (harem and subsequent mate acquisition) in a naturally regulated (feral) horse population in Sable Island National Park Preserve, Canada. Using a 5‐year, spatially explicit, mark‐resight dataset and hierarchical mixed‐effects linear modeling, we evaluated the influence of adult sex ratio (ASR) on mating success and then tested for effects of freshwater availability, density, unpaired male abundance, and precipitation during each breeding season. Unpaired male abundance, freshwater availability, and ASR differed in their effects on male mating success according to year and selection episode. Opportunity for sexual selection in males associated with harem acquisition increased with ASR, and unpaired male abundance further explained weather‐related interannual variation after accounting for ASR. In contrast, once a harem was secured, ASR had little effect on male mating inequality in regard to acquiring additional females, while interannual variation in mating inequality increased with decreasing freshwater availability. Our findings show that local demography, resource availability, and weather effect opportunity for sexual selection in males differently depending on selection episode, and can attenuate or accentuate effects of ASR.  相似文献   

4.
Assessing directional bias in interspecific gene flow might be important in determining the evolutionary trajectory of closely related species pairs. Using a set of 300 single nucleotide polymorphisms (SNPs) having variable propensity to cross species boundary, we evaluated the genomic extent and direction of interspecific gene flow in a progenitor‐derivative spruce species pair (black spruce and red spruce). A higher rate of gene flow was found from black spruce toward red spruce purebreds than vice versa. This asymmetry could reflect the historical gene flow between the two taxa at the time of species inception and during postglacial colonization. A clear asymmetry in introgression was depicted by a greater gene flow between red spruce and hybrids than between black spruce and hybrids. While backcrossing toward red spruce was invariably high across the genome, the actual species boundary is between hybrids and black spruce where gene flow is impeded at those genomic regions impermeable to introgression. Associations between hybrid index and climatic variables (total annual precipitation and mean annual temperature) were tested, as these might indicate a role for exogenous selection in maintaining the species boundary. While an apparent association was found between the hybrid index and precipitation, it collapsed when considered in light of the directional bias in interspecific gene flow. Hence, considering asymmetrical patterns of introgression allowed us to falsify an apparent role for exogenous selection. Although this was not formerly tested here, we suggest that this pattern could result from asymmetrical endogenous selection, a contention that deserves further investigations.  相似文献   

5.
Explaining the evolution of helping behaviour in the eusocial insects where nonreproductive (“worker”) individuals help raise the offspring of other individuals (“queens”) remains one of the most perplexing phenomena in the natural world. Polistes paper wasps are popular study models, as workers retain the ability to reproduce: such totipotency is likely representative of the early stages of social evolution. Polistes is thought to have originated in the tropics, where seasonal constraints on reproductive options are weak and social groups are effectively perennial. Yet, most Polistes research has focused on nontropical species, where seasonality causes family groups to disperse; cofoundresses forming new nests the following spring are often unrelated, leading to the suggestion that direct fitness through nest inheritance is key in the evolution of helping behaviour. Here, we present the first comprehensive genetic study of social structure across the perennial nesting cycle of a tropical PolistesPolistes canadensis. Using both microsatellites and newly developed single nucleotide polymorphism markers, we show that adult cofoundresses are highly related and that brood production is monopolized by a single female across the nesting cycle. Nonreproductive cofoundresses in tropical Polistes therefore have the potential to gain high indirect fitness benefits as helpers from the outset of group formation, and these benefits persist through the nesting cycle. Direct fitness may have been less important in the origin of Polistes sociality than previously suggested. These findings stress the importance of studying a range of species with diverse life history and ecologies when considering the evolution of reproductive strategies.  相似文献   

6.
The scarcity of parthenogenetic vertebrates is often attributed to their ‘inferior’ mode of clonal reproduction, which restricts them to self‐reproduce their own genotype lineage and leaves little evolutionary potential with regard to speciation and evolution of sexual reproduction. Here, we show that for some taxa, such uniformity does not hold. Using hybridogenetic water frogs (Pelophylax esculentus) as a model system, we demonstrate that triploid hybrid males from two geographic regions exhibit very different reproductive modes. With an integrative data set combining field studies, crossing experiments, flow cytometry and microsatellite analyses, we found that triploid hybrids from Central Europe are rare, occur in male sex only and form diploid gametes of a single clonal lineage. In contrast, triploid hybrids from north‐western Europe are widespread, occur in both sexes and produce recombined haploid gametes. These differences translate into contrasting reproductive roles between regions. In Central Europe, triploid hybrid males sexually parasitize diploid hybrids and just perpetuate their own genotype – which is the usual pattern in parthenogens. In north‐western Europe, on the other hand, the triploid males are gamete donors for diploid hybrids, thereby stabilizing the mixed 2n‐3n hybrid populations. By demonstrating these contrasting roles in male reproduction, we draw attention to a new significant evolutionary potential for animals with nonsexual reproduction, namely reproductive plasticity.  相似文献   

7.
Wolbachia is a widespread endosymbiont that induces dramatic manipulations of its host's reproduction. Although there has been substantial progress in the developing theory for Wolbachia–host interactions and in measuring the effects of Wolbachia on host fitness in the laboratory, there is a widely recognized need to quantify the effects of Wolbachia on the host fitness in the field. The wasp Anagrus sophiae, an egg parasitoid of planthoppers, carries a Wolbachia strain that induces parthenogenesis, but its effects on the fitness of its Anagrus host are unknown. We developed a method to estimate the realized lifetime reproductive success of female wasps by collecting them soon after they die naturally in the field, counting the number of eggs remaining in their ovaries and quantifying Wolbachia density in their body. We sampled from a highly infected A. sophiae population and found no evidence for Wolbachia virulence and possible evidence for positive effects of Wolbachia on realized reproductive success.  相似文献   

8.
Choosing a suitable mating partner is crucial for the fitness of an individual, whereby mating with siblings often results in inbreeding depression. We studied consequences of mating with siblings versus nonsiblings in the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), on lifetime reproductive traits. Furthermore, we analyzed whether cuticular hydrocarbon (CHC) profiles are family specific and could potentially influence the mating behavior of young adults. We hypothesized a reduced reproductive success of females mated with siblings and a more rapid mating of males with nonsiblings. The hatching rate from eggs of sibling pairs was lower compared to that of nonsibling pairs, pointing to inbreeding depression. Furthermore, the number of eggs laid by females decreased over time in both sibling and nonsibling pairs. Interestingly, the CHC profiles and the body mass differed between families. However, the beetles did not avoid siblings and accepted them as readily as nonsiblings for mating in no‐choice tests. In summary, although it had negative consequences to mate a sibling and although siblings could potentially be recognized by their CHC profiles, the beetles did not show a delayed mating with siblings. Our results indicate that P. cochleariae beetles have not developed a precopulatory mechanism to avoid inbreeding, at least under the test conditions applied here. We predict that instead a polyandrous mating system and/or postcopulatory mechanisms might have evolved in this species by which inbreeding costs can be reduced.  相似文献   

9.
The use of alternative reproductive tactics (ARTs) is widespread in animals. Males of some species may change tactics depending on age, body condition and social environment. Many bat species are polygynous where a fraction of males only have access to fertile females. For polygynous bats, knowledge of the reproductive success of males using different ARTs is scarce, and it remains unclear how age of males is related to switching decisions between social statuses. We studied a large captive population of Carollia perspicillata, where males are either harem holders, bachelors or peripheral males. Using a multistate procedure, we modelled the age‐related switches in reproductive tactics and in survival probability. From the model, we calculated the reproductive success and the frequencies of males displaying different reproductive tactics. As in mammals, the switch between social statuses is often related to age, we predicted that the transition probability of bachelor and peripheral males to harem status would increase with age. We show, however, that social status transition towards a harem holding position was not related to age. Reproductive success changed with age and social status. Harem males had a significantly higher reproductive success than bachelor males except between a short period from 3.8 to 4.4 years of age where success was similar, and a significantly higher reproductive success than peripheral males between 2.6 and 4.4 years of age. Harem males showed a clear decrease in the probability of maintaining social status with age, which suggests that senescence reduces resource holding potential.  相似文献   

10.
X. Li  P. Xu  C. Zhang  C. Sun  X. Li  X. Han  M. Li  R. Qiao 《Animal genetics》2019,50(2):162-165
Pig umbilical hernia (UH) affects pig welfare and brings considerable economic loss to the pig industry. To date, the molecular mechanisms underlying pig UH are still poorly understood. To identify potential loci for susceptibility to this disease, we performed a genome‐wide association study in an Erhualian × Shaziling F2 intercross population. A total of 45 animals were genotyped using Illumina Porcine SNP60 BeadChips. We observed a SNP (rs80993347) located in the calpain‐9 (CAPN9) gene on Sus scrofa chromosome 14 that was significantly associated with UH (= 1.97 × 10?10). Then, we identified a synonymous mutation rs321865883 (g.20164T>C) in exon 10 of the CAPN9 gene that distinguished two affected individuals (CC) from their normal full‐sibs (TC). Finally, quantitative polymerase chain reaction was explored to investigate the mRNA expression profile of the CAPN9 gene in 12 tissues in Yorkshire pigs at different developmental stages (3, 90 and 180 days). CAPN9 showed high expression levels in the gastrointestinal tract at these three growth stages. The results of this study indicate that the CAPN9 gene might be implicated in UH. Further studies are required to establish a role of CAPN9 in pig UH.  相似文献   

11.
Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole‐genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co‐cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low‐density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info .  相似文献   

12.
13.
The Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) is threatened by habitat destruction, over‐harvest and hybridization with nonnative trout. Currently, three Geographic Management Units (GMUs) are recognized within the taxon. Here, we describe a suite of 68 single‐nucleotide polymorphism (SNP) genetic markers for use in the study and management of Lahontan cutthroat trout and a closely related subspecies, the Paiute cutthroat trout (O. c. seleneris). These include markers variable within the two subspecies (n = 35), diagnostic for the two subspecies (n = 23) and diagnostic for Yellowstone cutthroat trout (O. c. bouvieri) and other closely related subspecies (n = 10). Sixty‐three markers were discovered by Sanger sequencing of 171 EST loci in an ascertainment panel including Lahontan cutthroat trout from four populations representing all GMUs. Five markers were identified in a secondary sequencing effort with a single population of Lahontan cutthroat trout. TaqMan assays were validated on six Lahontan cutthroat trout populations and a diverse panel of other trout. Over 90% of the markers variable in Lahontan cutthroat trout were polymorphic in at least two populations, and 66% were variable within all three GMUs. All Lahontan diagnostic markers were also fixed for the Lahontan allele in Paiute cutthroat trout. Most of the Yellowstone diagnostic markers can also be used for this purpose in other cutthroat trout subspecies. This is the first set of SNP markers to be developed for Lahontan cutthroat trout, and will be an important tool for conservation and management.  相似文献   

14.
Molecular genetics and symbiont diagnostics have revolutionized our understanding of insect species diversity, and the transformative effects of bacterial symbionts on host life history. Encarsia inaron is a parasitoid wasp that has been shown to harbour two bacterial endosymbionts, Wolbachia and Cardinium. Known then as E. partenopea, it was introduced to the USA in the late 1980s from populations collected in Italy and Israel for the biological control of an ornamental tree pest, the ash whitefly, Siphoninus phillyreae. We studied natural populations from sites in the USA, the Mediterranean and the Middle East as well as from a Cardinium‐infected laboratory culture established from Italy, with the aims of characterizing these populations genetically, testing reproductive isolation, determining symbiont infection status in their native and introduced range, and determining symbiont role. The results showed that the two Encarsia populations introduced to the USA are genetically distinct, reproductively isolated, have different symbionts and different host–symbiont interactions, and can be considered different biological species. One (‘E. inaron’) is doubly infected by Wolbachia and Cardinium, while only Cardinium is present in the other (‘E. partenopea’). The Cardinium strains in the two species are distinct, although closely related, and crossing tests indicate that the Cardinium infecting ‘E. partenopea’ induces cytoplasmic incompatibility. The frequency of symbiont infection found in the native and introduced range of these wasps was similar, unlike the pattern seen in some other systems. These results also lead to a retelling of a successful biological control story, with several more characters than had been initially described.  相似文献   

15.
To identify genetic variants in Notch signalling pathway genes that may predict survival of Han Chinese patients with epithelial ovarian cancer (EOC), we analysed a total of 1273 single nucleotide polymorphisms (SNPs) within 75 Notch genes in 480 patients from a published EOC genomewide association study (GWAS). We found that PSEN1 rs165934 and MAML2 rs76032516 were associated with overall survival (OS) of patients by multivariate Cox proportional hazards regression analysis. Specifically, the PSEN1 rs165934 AA genotype was associated with a poorer survival (adjusted hazards ratio [adjHR] = 1.41, 95% CI = 1.07‐1.84, and P = .014), compared with the CC + CA genotype, while MAML2 rs76032516 AA + AC genotypes were associated with a poorer survival (adjHR = 1.58, 95% CI = 1.16‐2.14, P = .004), compared with the CC genotype. The combined analysis of these two SNPs revealed that the death risk increased as the number of unfavourable genotypes increased in a dose‐dependent manner (Ptrend < .001). Additionally, the expression quantitative trait loci analysis revealed that the SNP rs165932 in the rs165934 LD block (r2 = .946) was associated with expression levels of PSEN1, which might be responsible for the observed association with SNP rs165934. The associations of PSEN1 rs165934 and MAML2 rs76032516 of the Notch signalling pathway genes with OS in Chinese EOC patients are novel findings, which need to be validated in other large and independent studies.  相似文献   

16.
X. Li  S. Yang  K. Dong  Z. Tang  K. Li  Z. Wang  B. Liu 《Animal genetics》2017,48(5):600-605
Selection affects the patterns of linkage disequilibrium (LD) around the site of a beneficial allele with an increase in LD among the hitchhiking alleles. Comparing the differences in regional LD between pig populations could help to identify putative genomic regions with potential adaptations for economic traits. In this study, using Illumina Porcine SNP60K BeadChip genotyping data from 207 Chinese indigenous, 117 South American village and 408 Large White pigs, we estimated the variation of genome‐wide LD between populations using the varld program. The top 0.1% standardized VarLD scores were used as a criterion for all comparisons, and compared with LD blocks, a total of four selection signatures on Sus scrofa chromosome (SSC) 7, 9, 13 and 14 were identified in all populations. These signatures overlapped with quantitative trait loci for linoleic acid content, age at puberty, number of muscle fibers per unit area, hip structure and body weight traits in pigs. Among them, one of the signatures (56.5–56.6 Mb on SSC7) in Large White pigs harbored the ADAMTSL3 gene, which is known to affect body length. The findings of this study seem to point toward recent selection in different pig populations. Further investigations are encouraged to confirm the selection signatures detected by varld in the present study.  相似文献   

17.
Gestation and longevity scale with body mass across taxa, yet within size dimorphic taxa, males tend to have reduced lifespans compared with females. Testing life history models, and accounting for sex differences in longevity, requires obtaining accurate longitudinal data from wild populations. We provide the first report describing key life history parameters from a long‐term study of giraffes in Africa. We followed a population of Thornicroft's giraffe (Giraffa camelopardalis thornicrofti) in Zambia for over 40 years. Maximum longevity among females was approximately 28 years, with lifespan accounting for 81% of the variance in lifetime reproductive success. Average adult female life expectancy was no different than average adult male life expectancy. However, the breeding lifespan of males was about half that of females, while maximum lifespan of males was 75% that of females. Our findings support the suggestion that sex differences in maximum lifespan arise from stronger selection for lengthy lives in females than in males. Among females, longer lives are associated with greater reproductive output.  相似文献   

18.
Utilization of multiple putatively neutral DNA markers for inferring evolutionary history of species population is considered to be the most robust approach. Molecular population genetic studies have been conducted in many species of Anopheles genus, but studies based on single nucleotide polymorphism (SNP) data are still very scarce. Anopheles minimus is one of the principal malaria vectors of Southeast (SE) Asia including the Northeastern (NE) India. Although population genetic studies with mitochondrial genetic variation data have been utilized to infer phylogeography of the SE Asian populations of this species, limited information on the population structure and demography of Indian An. minimus is available. We herewith have developed multilocus nuclear genetic approach with SNP markers located in X chromosome of An. minimus in eight Indian and two SE Asian population samples (121 individual mosquitoes in total) to infer population history and test several hypotheses on the phylogeography of this species. While the Thai population sample of An. minimus presented the highest nucleotide diversity, majority of the Indian samples were also fairly diverse. In general, An. minimus populations were moderately substructured in the distribution range covering SE Asia and NE India, largely falling under three distinct genetic clusters. Moreover, demographic expansion events could be detected in the majority of the presently studied populations of An. minimus. Additional DNA sequencing of the mitochondrial COII region in a subset of the samples (40 individual mosquitoes) corroborated the existing hypothesis of Indian An. minimus falling under the earlier reported mitochondrial lineage B.  相似文献   

19.
Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next‐generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species is ecologically important to eastern US forests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental–functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases of GBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental–functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluated Fst per locus while accounting for genetic differentiation between coastal subpopulations and Piedmont‐Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–BayeScan Fst outliers. For LFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment‐driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.  相似文献   

20.
Reproductive isolation can be initiated by changes in one or a few key traits that prevent random mating among individuals in a population. During the early stages of speciation, when isolation is often incomplete, there will be a heterogeneous pattern of differentiation across regions of the genome between diverging populations, with loci controlling these key traits appearing the most distinct as a result of strong diversifying selection. In this study, we used Illumina‐sequenced ddRAD tags to identify genomewide patterns of differentiation in three recently diverged island populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. Populations of this species have diverged in plumage colour, and these differences in plumage colour, in turn, are used in conspecific recognition and likely important in reproductive isolation. Previous candidate gene sequencing identified point mutations in MC1R and ASIP, both known pigmentation genes, to be associated with the difference in plumage colour between islands. Here, we show that background levels of genomic differentiation based on over 70,000 SNPs are extremely low between populations of distinct plumage colour, with no loci reaching the level of differentiation found in either candidate gene. Further, we found that a phylogenetic analysis based on these SNPs produced a taxonomy wherein the two melanic populations appear to have evolved convergently, rather than from a single common ancestor, in contrast to their original classification as a single subspecies. Finally, we found evidence that the pattern of low genomic differentiation is the result of both incomplete lineage sorting and gene flow between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号