首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two‐dimensional gel electrophoresis and separation by ion‐exchange and reverse‐phase high‐performance liquid chromatography followed by mass spectrometry using tanden matrix‐assisted laser desorption/ionization with time‐of‐flight (MALDI‐TOF/TOF) mass spectrometry and electrospray ionization‐quadrupole with time‐of‐flight (ESI‐Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10‐ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.  相似文献   

2.
We report automated and time‐efficient (2 h per sample) profiling of muscle using ultra‐performance LC coupled directly with high‐definition MS (HDMSE). Soluble proteins extracted from rat gastrocnemius (n = 10) were digested with trypsin and analyzed in duplicate using a 90 min RPLC gradient. Protein identification and label‐free quantitation were performed from HDMSE spectra analyzed using Progenesis QI for Proteomics software. In total 1514 proteins were identified. Of these, 811 had at least three unique peptides and were subsequently used to assess the dynamic range and precision of LC‐HDMSE label‐free profiling. Proteins analyzed by LC‐HDMSE encompass the entire complement of glycolytic, β‐oxidation, and tricarboxylic acid enzymes. In addition, numerous components of the electron transport chain and protein kinases involved in skeletal muscle regulation were detected. The dynamic range of protein abundances spanned four orders of magnitude. The correlation between technical replicates of the ten biological samples was R2 = 0.9961 ± 0.0036 (95% CI = 0.9940 – 0.9992) and the technical CV averaged 7.3 ± 6.7% (95% CI = 6.87 – 7.79%). This represents the most sophisticated label‐free profiling of skeletal muscle to date.  相似文献   

3.
Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; www.telocytes.com ). Establishing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2‐dimensional nano‐electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano‐ESI LC‐MS/MS). Differentially expressed proteins were screened by two‐sample t‐test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up‐ or down‐regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and plasma membrane (13%), while FB up‐regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These identified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway, our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs using a quantitative proteomics approach. Protein expression profile shows many up‐regulated proteins e.g. myosin‐14, periplakin, suggesting that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal. Furthermore, up‐regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell niche modulation. The novel proteins identified in TCs will be an important resource for further proteomic research and it will possibly allow biomarker identification for TCs. It also creates the premises for understanding the pathogenesis of some lung diseases involving TCs.  相似文献   

4.
Efflux proteins are membrane proteins, which are involved in the transportation of multidrugs. The annotation of efflux proteins in genomic sequences would aid to understand the function. Although the percentage of membrane proteins in genomes is estimated to be 25–30%, there is no information about the content of efflux proteins. For annotating such class of proteins it is necessary to develop a reliable method to identify efflux proteins from amino acid sequence information. In this work, we have developed a method based on radial basis function networks using position specific scoring matrices (PSSM) and amino acid properties. We noticed that the C‐terminal domain of efflux proteins contain vital information for discrimination. Our method showed an accuracy of 78 and 92% in discriminating efflux proteins from transporters and membrane proteins, respectively using fivefold cross‐validation. We utilized our method for annotating the genomes E. coli and P. aeruginosa and it predicted 8.7 and 9.2% of proteins as efflux proteins in these genomes, respectively. The predicted efflux proteins have been compared with available experimental data and we observed a very good agreement between them. Further, we developed a web server for classifying efflux proteins and it is freely available at http://rbf.bioinfo.tw/~sachen/EFFLUXpredict/Efflux‐RBF.php . We suggest that our method could be an effective tool for annotating efflux proteins in genomic sequences.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
In proteomic studies, assigning protein identity from organisms whose genomes are yet to be completely sequenced remains a challenging task. For these organisms, protein identification is typically based on cross species matching of amino acid sequence obtained from collision induced dissociation (CID) of peptides using mass spectrometry. The most direct approach of de novo sequencing is slow and often difficult, due to the complexity of the resultant CID spectra. For MALDI-MS, this problem has been addressed by using chemical derivatisation to direct peptide fragmentation, thereby simplifying CID spectra and facilitating de novo interpretation. In this study, milk whey proteins from the tammar wallaby (Macropus eugenii) were used to evaluate three chemical derivatisation methods compatible with MALDI MS/MS. These methods included (i) guanidination and sulfonation using chemically-assisted fragmentation (CAF), (ii) guanidination and sulfonation using 4-sulfophenyl isothiocyanate (SPITC) and (iii) derivatising the epsilon-amino group of lysine residues with Lys Tag 4H. Derivatisation with CAF and SPITC resulted in more protein identification than Lys Tag 4H. Sulfonation using SPITC was the preferred method due to the low cost per experiment, the reactivity with both lysine and arginine terminated peptides and the resultant simplified MS/MS spectra.*Australian Peptide Conference Issue.**This project was funded by an ARC Linkage grant to Deane supported by TGR Biosciences and facilitated by access to the Australian Proteome Analysis Facility established under the Australian Government’s Major National Research Facilities program.  相似文献   

6.
Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large‐scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta‐analysis. We identified a total of 201 996 and 39 953 peptide‐spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein‐level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA‐Seq‐derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA‐Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes. The findings of this study have been integrated into the EuPathDB. The data have been deposited to the ProteomeXchange with identifiers PXD000297and PXD000298.  相似文献   

7.
The culture filtrate proteins (CFPs) from Mycobacterium tuberculosis have been shown to induce protective immune responses in human and animal models, making them a promising source of candidate targets for tuberculosis drugs, vaccines, and diagnostics. The constituents of the M. tuberculosis CFP proteome are complex and vary with growth conditions. To effectively profile CFPs, gel‐based prefractionation is usually performed before MS analysis. In this study, we describe a novel prefractionation approach by which the proteome is divided into seven partially overlapping fractions by biomimetic affinity chromatography (BiAC) using a six‐column cascade. The LC‐MS/MS analysis of individual fractions identified a total of 541 CFPs, including 61 first‐time identifications. Notably, ~1/3 (20/61) of these novel CFPs are membrane proteins, among which nine proteins have 2–14 transmembrane domains. In addition, ~1/4 (14/61) of the CFPs are basic proteins with pI values greater than 9.0. Our data demonstrate that biomimetic affinity chromatography prefractionation markedly improves protein detection by LC‐MS/MS, and the coverage of basic and hydrophobic proteins in particular is remarkably increased.  相似文献   

8.
Giant bacteriophages ?KZ and EL of Pseudomonas aeruginosa contain 62 and 64 structural proteins, respectively, identified by ESI‐MS/MS on total virion particle proteins. These identifications verify gene predictions and delineate the genomic regions dedicated to phage assembly and capsid formation (30 proteins were identified from a tailless ?KZ mutant). These data form the basis for future structural studies and provide insights into the relatedness of these large phages. The ?KZ structural proteome strongly correlates to that of Pseudomonas chlororaphis bacteriophage 201?2‐1. Phage EL is more distantly related, shown by its 26 non‐conserved structural proteins and the presence of genomic inversions.  相似文献   

9.
Thyroglobulin is an iodinated glycoprotein (m.w. 660 kD) required for the storage and formation of thyroid hormone. Thyroglobulin was digested by trypsin in distilled water and the resulting peptides were identified by TOF‐secondary ion mass spectrometry, using TFA as a matrix to catalyze the ionization of the peptides. Cryostate sections of pig thyroid glands were incubated with trypsin in distilled water, followed by deposition of TFA. The sections were analyzed with TOF‐secondary ion mass spectrometry, and the peptides formed were identified through comparison with the peptides of the thyroglobulin reference sample. The thyroglobulin fragments were localized in the thyroid follicle cells with a spatial resolution of 3 microns, a mass resolution mm of >6000 and a mass accuracy of <60 ppm. The thyroglobulin was found localized heterogeneously in the follicle cells. The heterogeneity may be due to thyroglobulin synthesis, uptake and degradation or globules representing insoluble polymers of thyroglobulin considered to be a mechanism for storing hormone at high concentrations.  相似文献   

10.
Motivation: The key to MS -based proteomics is peptide sequencing.The major challenge in peptide sequencing, whether library searchor de novo, is to better infer statistical significance andbetter attain noise reduction. Since the noise in a spectrumdepends on experimental conditions, the instrument used andmany other factors, it cannot be predicted even if the peptidesequence is known. The characteristics of the noise can onlybe uncovered once a spectrum is given. We wish to overcome suchissues. Results: We designed RAId to identify peptides from their associatedtandem mass spectrometry data. RAId performs a novel de novosequencing followed by a search in a peptide library that wecreated. Through de novo sequencing, we establish the spectrum-specificbackground score statistics for the library search. When thedatabase search fails to return significant hits, the top-rankingde novo sequences become potential candidates for new peptidesthat are not yet in the database. The use of spectrum-specificbackground statistics seems to enable RAId to perform well evenwhen the spectral quality is marginal. Other important featuresof RAId include its potential in de novo sequencing alone andthe ease of incorporating post-translational modifications. Availability: Programs implementing the methods described areavailable from the authors on request. Contact: yyu{at}ncbi.nlm.nih.gov Supplementary information: ftp://ftp.ncbi.nih.gov/pub/yyu/Proteomics/MSMS/RAId/MSMS_bioinfo_supp.pdf  相似文献   

11.
In this work, we report the development of a novel enrichment protocol for peptides by using the microspheres composed of Fe3O4@nSiO2 Core and perpendicularly aligned mesoporous SiO2 shell (designated Fe3O4@nSiO2@mSiO2). The Fe3O4@nSiO2@mSiO2 microspheres possess useful magnetic responsivity which makes the process of enrichment fast and convenient. The highly ordered nanoscale pores (2 nm) and high‐surface areas of the microspheres were demonstrated to have good size‐exclusion effect for the adsorption of peptides. An increase of S/N ratio over 100 times could be achieved by using the microspheres to enrich a standard peptide, and the application of the microspheres to enrich universal peptides was performed by using myoglobin tryptic digest solution. The enrichment efficiency of re‐used Fe3O4@nSiO2@mSiO2 microspheres was also studied. Large‐scale enrichment of endogenous peptides in rat brain extract was achieved by the microspheres. Automated nano‐LC‐ESI‐MS/MS was applied to analyze the sample after enrichment, and 60 unique peptides were identified in total. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel Fe3O4@nSiO2@mSiO2 microspheres makes it a promising candidate for selectively isolation and enrichment of endogenous peptides from complex biological samples.  相似文献   

12.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

13.
Madagascar periwinkle (Catharanthus roseus) is the major source of terpenoid indole alkaloids, such as vinblastine or vincristine, used as natural drugs against various cancers. In this study, we have extensively analyzed the proteome of cultured C. roseus cells. Comparison of the proteomes of two independent cell lines with different terpenoid indole alkaloid metabolism by 2D‐DIGE revealed 358 proteins that differed quantitatively by at least a twofold average ratio. Of these, 172 were identified by MS; most corresponded to housekeeping proteins. Less abundant proteins were identified by LC separation of tryptic peptides of proteins from one of the lines. We identified 1663 proteins, most of which are housekeeping proteins or involved in primary metabolism. However, 63 enzymes potentially involved in secondary metabolism were also identified, of which 22 are involved in terpenoid indole alkaloid biosynthesis and 16 are predicted transporters putatively involved in secondary metabolite transport. About 30% of the proteins identified have an unclear or unknown function, indicating important gaps in knowledge of plant metabolism. This study is an important step toward elucidating the proteome of C. roseus, which is critical for a better understanding of how this plant synthesizes terpenoid indole alkaloids.  相似文献   

14.
Advancements in high‐resolution HPLC and mass spectrometry have reinvigorated the application of this technology to identify peptides eluted from immunopurified MHC class I molecules. Three melanoma cell lines were assessed using w6/32 isolation, peptide elution and HPLC purification; peptides were identified by mass spectrometry. A total of 13 829 peptides were identified; 83–87% of these were 8–11 mers. Only approximately 15% have been described before. Subcellular locations of the source proteins showed even sampling; mRNA expression and total protein length were predictive of the number of peptides detected from a single protein. HLA‐type binding prediction for 10 078 9/10 mer peptides assigned 88–95% to a patient‐specific HLA subtype, revealing a disparity in strength of predicted binding. HLA‐B*27‐specific isolation successfully identified some peptides not found using w6/32. Sixty peptides were selected for immune screening, based on source protein and predicted HLA binding; no new peptides recognized by antimelanoma T cells were discovered. Additionally, mass spectrometry was unable to identify several epitopes targeted ex vivo by one patient's T cells.  相似文献   

15.
Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE‐LC‐MS/MS and LC‐MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin‐converting enzyme (an M2 metalloprotease), an M1 zinc‐dependant metalloprotease, a glucose‐methanol‐choline (GMC)‐oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium‐binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium‐mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.  相似文献   

16.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

17.
Metoprolol is available for clinical use as a racemic mixture. The S‐(?)‐metoprolol enantiomer is the one expressing higher activity in the blockade of the β1‐adrenergic receptor. The α‐hydroxymetoprolol metabolite also has activity in the blockade of the β1‐adrenergic receptor. The present study describes the development and validation of a stereoselective method for sequential analysis of metoprolol and of α‐hydroxymetoprolol in plasma using high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS). 1‐ml aliquots of plasma were extracted with dichloromethane : diisopropyl ether (1:1, v/v). Metoprolol enantiomers and α‐hydroxymetoprolol isomers were separated on a Chiralpak AD column (Daicel Chemical Industries, New York, NY, USA) and quantitated by LC‐MS/MS. The limit of quantitation obtained was 0.2 ng of each metoprolol enantiomer/ml plasma and 0.1 ng/ml of each α‐hydroxymetoprolol isomer/ml plasma. The method was applied to the study of kinetic disposition of metoprolol in plasma samples collected up to 24 h after the administration of a single oral dose of 100‐mg metoprolol tartrate to a hypertensive parturient with a gestational age of 42 weeks. The clinical study showed that the metoprolol pharmakokinetics is enantioselective, with the observation of higher area under the curve (AUC)0?∞ values for S‐(?)‐metoprolol (AUCS‐(?)/AUCR‐(+) = 1.81) and the favoring of the formation of the new chiral center 1′R of α‐hydroxymetoprolol (AUC0?∞1′R/1′S = 2.78). Chirality, 25:1–7, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Comparative proteomics was performed to identify proteins in the liver of Takifugu rubripes in response to excessive fluoride exposure. Sixteen fish were randomly divided into a control group and an experimental group. The control group was raised in soft water alone (F? = 0.4 mg/L), and the experimental group was raised in the same water with sodium fluoride at a high concentration of 35 mg/L. After 3 days, proteins were extracted from the fish livers and then subjected to two‐dimensional polyacrylamide gel electrophoresis analysis. The matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) was applied to identify the proteins that were differentially expressed from the two groups of fish. Among an average of 816 and 918 proteins detected in the control and treated groups, respectively, 16 proteins were upregulated and 35 were downregulated (P < 0.01) in the fluoride‐treated group as compared with those in the control group. Twenty‐four highly differentially expressed proteins were further analyzed by MALDI‐TOF/TOF‐MS, and eight were identified by Mascot. These eight proteins include disulfide isomerase ER‐60, 4SNc‐Tudor domain protein, SMC3 protein, Cyclin D1, and mitogen‐activated protein kinase 10, as well as three unknown proteins. Consistent with their previously known functions, these identified proteins seem to be involved in apoptosis and other functions associated with fluorosis. These results will greatly contribute to our understanding of the effects of fluoride exposure on the physiological and biochemical functions of Takifugu and the toxicological mechanism of fluoride causing fluorosis in both fish and human. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:21–28, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20308  相似文献   

19.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

20.
Telocytes (TCs) are described as a particular type of cells of the interstitial space ( www.telocytes.com ). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2‐D nano‐ESI LC‐MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two‐sample t‐test, P < 0.05) as up‐ or down‐regulated (fold change >2). We found that in TCs there are 38 up‐regulated proteins at the 5th day and 26 up‐regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up‐regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54‐fold) and von Willebrand factor (5.74‐fold). The 26 up‐regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down‐regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro‐proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号