首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   

2.
Common ragweed (Ambrosia artemisiifolia L.) is an invasive, wind‐pollinated plant nearly ubiquitous in disturbed sites in its eastern North American native range and present across growing portions of Europe, Africa, Asia, and Australia. Phenotypic divergence between European and native‐range populations has been described as rapid evolution. However, a recent study demonstrated major human‐mediated shifts in ragweed genetic structure before introduction to Europe and suggested that native‐range genetic structure and local adaptation might fully explain accelerated growth and other invasive characteristics of introduced populations. Genomic differentiation that potentially influenced this structure has not yet been investigated, and it remains unclear whether substantial admixture during historical disturbance of the native range contributed to the development of invasiveness in introduced European ragweed populations. To investigate fine‐scale population genetic structure across the species' native range, we characterized diallelic SNP loci via a reduced‐representation genotyping‐by‐sequencing (GBS) approach. We corroborate phylogeographic domains previously discovered using traditional sequencing methods, while demonstrating increased power to resolve weak genetic structure in this highly admixed plant species. By identifying exome polymorphisms underlying genetic differentiation, we suggest that geographic differentiation of this important invasive species has occurred more often within pathways that regulate growth and response to defense and stress, which may be associated with survival in North America's diverse climatic regions.  相似文献   

3.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

4.
Species invading new ranges are subject to a series of demographic events that can strongly shape genetic diversity. Describing this demographic history is important for understanding where invasive species come from and how they spread, and is critical to testing hypotheses of postinvasion adaptation. Here, we analyse nuclear and chloroplast genetic diversity to study the invasion history of the widespread colonizing weed, Silene latifolia (Caryophyllaceae). Bayesian clustering and PCA revealed strong population structure in the native range of Europe, and although genotypes from multiple native sources were present in the introduced range of North America, the spatial distribution of genetic variance was dramatically reorganized. Using approximate Bayesian computation (ABC), we compared support for different invasion scenarios, including the number and size of independent introduction events and the amount of admixture occurring between sources of introduced genotypes. Our results supported independent introductions into eastern and western North America, with the latter forming a bridgehead for a secondary invasion into the Great Lakes region of central North America. Despite small estimated founder population sizes, the duration of the demographic bottleneck after the initial introduction appeared extremely short‐lived. This pattern of repeated colonization and rapid expansion has effectively eroded the strong population structure and cytonuclear associations present in Europe, but has retained overall high genetic diversity since invasion. Our results highlight the flexibility of the ABC approach for constructing a narrative of the demographic history of species invasions and provide baseline for future studies of evolutionary changes in introduced S. latifolia populations.  相似文献   

5.
Invasive species’ success may depend strongly on the genetic resources they maintain through the invasion process. We ask how many introductions have occurred in the North American weed Centaurea stoebe micranthos (Asteraceae), and explore whether genetic diversity and population structure have changed as a result of introduction. We surveyed individuals from 15 European native range sites and 11 North American introduced range sites at six polymorphic microsatellite loci. No significant difference existed in the total number of alleles or in the number of private alleles found in each range. Shannon–Weaver diversity of phenotype frequencies was also not significantly different between the ranges, while expected heterozygosity was significantly higher in the invasive range. Population structure was similar between the native range and the invasive range, and isolation by distance was not significant in either range. Traditional assignment methods did not allocate any North American individuals to the sampled European populations, while Bayesian assignment methods grouped individuals into nine genetic clusters, with three of them shared between North America and Europe. Invasive individuals tended to have genetically admixed profiles, while natives tended to assign more strongly to a single cluster. Many North American individuals share assignment with Romania and Bulgaria, suggesting two separate invasions that have undergone gene flow in North America. Samples from three other invasive range sites were genetically distinct, possibly representing three other unique introductions. Multiple introductions and the maintenance of high genetic diversity through the introduction process may be partially responsible for the invasive success of C. stoebe micranthos.  相似文献   

6.
Human‐induced biological invasions are common worldwide and often have negative impacts on wildlife and human societies. Several studies have shown evidence for selection on invaders after introduction to the new range. However, selective processes already acting prior to introduction have been largely neglected. Here, we tested whether such early selection acts on known behaviour‐related gene variants in the yellow‐crowned bishop (Euplectes afer), a pet‐traded African songbird. We tested for nonrandom allele frequency changes after trapping, acclimation and survival in captivity. We also compared the native source population with two independent invasive populations. Allele frequencies of two SNPs in the dopamine receptor D4 (DRD4) gene—known to be linked to behavioural activity in response to novelty in this species—significantly changed over all early invasion stages. They also differed between the African native population and the two invading European populations. The two‐locus genotype associated with reduced activity declined consistently, but strongest at the trapping stage. Overall genetic diversity did not substantially decrease, and there is little evidence for new alleles in the introduced populations, indicating that selection at the DRD4 gene predominantly worked on the standing genetic variation already present in the native population. Our study demonstrates selection on a behaviour‐related gene during the first stages of a biological invasion. Thus, pre‐establishment stages of a biological invasion do not only determine the number of propagules that are introduced (their quantity), but also their phenotypic and genetic characteristics (their quality).  相似文献   

7.
Non‐native invasive species are threatening ecosystems and biodiversity worldwide. High genetic variation is thought to be a critical factor for invasion success. Accordingly, the global invasion of a few clonal lineages of the gastropod Potamopyrgus antipodarum is thus both puzzling and has the potential to help illuminate why some invasions succeed while others fail. Here, we used SNP markers and a geographically broad sampling scheme (N = 1617) including native New Zealand populations and invasive North American and European populations to provide the first widescale population genetic assessment of the relationships between and among native and invasive P. antipodarum. We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages. One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario. The other widespread North American group had a more complex origin that included the other European lineage and two New Zealand clusters. Altogether, our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents. Our findings provide critical information for prevention of additional invasions and control of existing invasive populations and are of broader relevance towards understanding the establishment and evolution of asexual populations and the forces driving biological invasion.  相似文献   

8.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

9.
Rhithropanopeus harrisii (Gould 1841) has a native distribution from New Brunswick (Canada) to Veracruz (Mexico) and is considered an invasive species in northwestern North American (Oregon and California), South American (Brazil) and European estuaries and rivers. In Europe, it was observed for the first time in 1874, in The Netherlands. We sequenced and analyzed part of the cytochrome oxidase subunit I gene (mitochondrial DNA) of eight populations, three from the east coast of the United States of America (USA) and five from Europe, in order to assess their genetic diversity and to determine a potential founder population. European populations are characterized by a lower number of haplotypes than the whole native region of the eastern USA, suggesting that genetic bottlenecks occurred during the European colonisation. Along the North American East Coast, there is evidence of clearcut genetic heterogeneity, New Jersey being the most similar population in its genetic structure to the postulated Europe-founding population. Also the different European populations are heterogeneous and there is a tendency of higher genetic diversity in the populations founded earlier. R. harrisii is still in the process of expansion in Europe and may have been introduced once or repeatedly by different invasion mechanisms. The pronounced lack of gene flow among populations is of great ecological significance, since it may facilitate rapid adaptation and specialization to local conditions within single estuarine systems.  相似文献   

10.

Background

North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range.

Results

Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage.

Conclusions

Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from genetically diverse populations.  相似文献   

11.
Biologic invasions can have important ecological, economic and social consequences, particularly when they involve the introduction and spread of plant invasive pathogens, as they can threaten natural ecosystems and jeopardize the production of human food. Examples include the grapevine downy mildew, caused by the oomycete Plasmopara viticola, an invasive species native to North America, introduced into Europe in the 1870s. We investigated the introduction and spread of this invasive pathogen, by analysing its genetic structure and diversity in a large sample from European vineyards. Populations of P. viticola across Europe displayed little genetic diversity, consistent with the occurrence of a bottleneck at the time of introduction. Bayesian coalescent analyses revealed a clear population expansion signal in the genetic data. We detected a weak, but significant, continental‐wide population structure, with two geographically and genetically distinct clusters in Western and Eastern European vineyards. Approximate Bayesian computation, analyses of clines of genetic diversity and of isolation‐by‐distance patterns provided evidence for a wave of colonization moving in an easterly direction across Europe. This is consistent with historical reports, first mentioning the introduction of the disease in Bordeaux vineyards (France) and sub‐sequently documenting its rapid spread across Europe. This initial introduction in the west was probably followed by a ‘leap‐frog’ event into Eastern Europe, leading to the formation of the two genetic clusters we detected. This study shows that recent population genetics methods within the Bayesian and coalescence frameworks are extremely powerful for increasing our understanding of pathogen population dynamics and invasion histories.  相似文献   

12.

Background and Aims

Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant then it was massively planted by foresters in many countries but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity.

Methods

Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions.

Key Results

Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation.

Conclusions

This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.  相似文献   

13.
Invasive species offer excellent model systems for studying rapid evolutionary change. In this context, molecular markers play an important role because they provide information about pathways of introduction, the amount of genetic variation introduced, and the extent to which founder effects and inbreeding after population bottlenecks may have contributed to evolutionary change. Here, we studied microsatellite variation in eight polymorphic loci among and within 27 native and 26 introduced populations of garlic mustard (Alliaria petiolata), a European herb which is a current serious invader in North American deciduous forests. Overall, introduced populations were genetically less diverse. However, considerable variability was present and when compared to the probable source regions, no bottleneck was evident. Observed heterozygosity was very low and resulted in high inbreeding coefficients, which did not differ significantly between native and introduced populations. Thus, selfing seems to be equally dominant in both ranges. Consequently, there was strong population differentiation in the native (F(ST) = 0.704) and the introduced (F(ST) = 0.789) ranges. The high allelic diversity in the introduced range strongly suggests multiple introductions of Alliaria petiolata to North America. Out of six European regions, the British Isles, northern Europe, and central Europe had significantly higher proportions of alleles, which are common to the introduced range, and are therefore the most probable source regions. The genetic diversity established by multiple introductions, and the lack of inbreeding depression in this highly selfing species, may have contributed to the invasion success of Alliaria petiolata.  相似文献   

14.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

15.
The same vectors that introduce species to new ranges could move them among native populations, but how human‐mediated dispersal impacts native ranges has been difficult to address because human‐mediated dispersal and natural dispersal can simultaneously shape patterns of gene flow. Here, we disentangle human‐mediated dispersal from natural dispersal by exploiting a system where the primary vector was once extensive but has since ceased. From 10th to 19th Centuries, ships in the North Atlantic exchanged sediments dredged from the intertidal for ballast, which ended when seawater ballast tanks were adopted. We investigate genetic patterns from RADseq‐derived SNPs in the amphipod Corophium volutator (n = 121; 4,870 SNPs) and the annelid Hediste diversicolor (n = 78; 3,820 SNPs), which were introduced from Europe to North America, have limited natural dispersal capabilities, are abundant in intertidal sediments, but not commonly found in modern water ballast tanks. We detect similar levels of genetic subdivision among introduced North American populations and among native European populations. Phylogenetic networks and clustering analyses reveal population structure between sites, a high degree of phylogenetic reticulation within ranges, and phylogenetic splits between European and North American populations. These patterns are inconsistent with phylogeographic structure expected to arise from natural dispersal alone, suggesting human activity eroded ancestral phylogeographic structure between native populations, but was insufficient to overcome divergent processes between naturalized populations and their sources. Our results suggest human activity may alter species' evolutionary trajectories on a broad geographic scale via regional homogenization and global diversification, in some cases precluding historical inference from genetic data.  相似文献   

16.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.  相似文献   

17.
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype–environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat‐shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental‐induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.  相似文献   

18.
Understanding the genetic diversity and structure of invasive pathogens in source and in introduced areas is crucial to the revelation of hidden biological features of an organism, to the reconstruction of the course of invasions and to the establishment of effective control measures. Hymenoscyphus pseudoalbidus (anamorph: Chalara fraxinea) is an invasive and highly destructive fungal pathogen found on common ash Fraxinus excelsior in Europe and is native to East Asia. To gain insights into its dispersal mechanisms and history of invasion, we used microsatellite markers and characterized the genetic structure and diversity of H. pseudoalbidus populations at three spatial levels: (i) between Europe and Japan, (ii) in Europe and (iii) at the epidemic's front in Switzerland. Phylogenetic and network analysis demonstrated that individuals from both regions are conspecific. However, populations from Japan harboured a higher genetic diversity and were genetically differentiated from European ones. No evident population structure was found among the 1208 European strains using Bayesian and multivariate clustering analysis. Only the distribution of genetic diversity in space, pairwise population differentiation (GST) and the spatial analysis of principal components revealed a faint geographical pattern around Europe. A significant allele deficiency in most European populations pointed to a recent genetic bottleneck, whereas no pattern of isolation by distance was found. Our data suggest that H. pseudoalbidus was introduced just once by at least two individuals. The potential source region of H. pseudoalbidus is vast, and further investigations are required for a more accurate localization of the source population.  相似文献   

19.
Propagule pressure is considered the main determinant of success of biological invasions: when a large number of individuals are introduced into an area, the species is more likely to establish and become invasive. Nevertheless, precise data on propagule pressure exist only for a small sample of invasive species, usually voluntarily introduced. We studied the invasion of the American bullfrog, Rana catesbeiana, into Europe, a species that is considered a major cause of decline for native amphibians. For this major invader with scarce historical data, we used population genetics data (a partial sequence of the mitochondrial cytochrome b gene) to infer the invasion history and to estimate the number of founders of non-native populations. Based on differences between populations, at least six independent introductions from the native range occurred in Europe, followed by secondary translocations. Genetic diversity was strongly reduced in non-native populations, indicating a very strong bottleneck during colonization. We used simulations to estimate the precise number of founders and found that most non-native populations derive from less than six females. This capability of invasion from a very small number of propagules challenges usual management strategies; species with such ability should be identified at an early stage of introduction.  相似文献   

20.
Li XM  Liao WJ  Wolfe LM  Zhang DY 《PloS one》2012,7(2):e31935
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028-0.122, which suggests that populations possessed ~8-36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262-0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号