首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maddenia (Rosaceae) has been distinguished from Prunus on the basis of its tepaloid perianth and one‐ to two‐carpellate gynoecium. These distinctive morphological traits nonetheless overlap with several Prunus spp. Maddenia has previously been shown to be nested within Prunus, more specifically within a clade containing members of subgenera Laurocerasus and Padus, but its phylogenetic position within that clade has not been defined precisely. This study clarifies the position of Maddenia within Prunus through phylogenetic analyses of nuclear ribosomal internal transcribed spacer (ITS) and plastid ndhF sequences, with an expanded sampling of tropical species of subgenus Laurocerasus and the inclusion of three Maddenia spp. The monophyly of Maddenia is supported by both the ITS and ndhF analyses, but both datasets support the inclusion of Maddenia in Prunus. All trees from the ITS analysis and some trees from the ndhF analysis also support a close alliance of Maddenia with a clade comprising temperate species of subgenera Laurocerasus and Padus. On the basis of these results, all recognized species of Maddenia are herein formally transferred to Prunus, which requires four new combinations and one new name: Prunus fujianensis (Y.T.Chang) J.Wen, comb. nov. ; Prunus himalayana J.Wen, nom. nov. ; Prunus hypoleuca (Koehne) J.Wen, comb. nov. ; Prunus hypoxantha (Koehne) J.Wen, comb. nov. ; and Prunus incisoserrata (T.T.Yü & T.C.Ku) J.Wen, comb. nov. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 236–245.  相似文献   

2.
The phylogenetic relationships of the tribe Rhingiini and the genus Cheilosia (Diptera, Syrphidae) were investigated using morphological and molecular characters. The genus Cheilosia is one of the most diverse lineages of hoverflies (Syrphidae). The mitochondrial protein coding gene cytochrome c oxidase subunit I (COI), and the D2‐3 region of the nuclear 28S rRNA gene were chosen for sequencing, and morphological characters were scored for both adults and immature stages. The combined dataset included 56 ingroup taxa. The datasets were analyzed separately and in conjunction, using both static and dynamic alignment under the parsimony criterion. The aim of the study was to assess the phylogenetic relationships of the tribe Rhingiini, and to explore if the subgenera of Cheilosia were supported as monophyletic clades. Results showed that the monophyly of subtribes of Rhingiini remained ambiguous, especially due to unstable phylogenetic placements of the genera Portevinia and Rhingia. We recovered most subgenera of Cheilosia as monophyletic clades. Dynamic alignment, using the optimization alignment program POY, always recovered more parsimonious topologies under all parameter weighting schemes, than did parsimony analyses using static alignment and analyzed with NONA.  相似文献   

3.
The subgenera of Wiedemannia are poorly defined and, as such, most recently described species are not assigned to a subgenus or have been assigned to a subgenus without explanation. In this study we perform a molecular phylogenetic analysis to elucidate relationships within the genus Wiedemannia. We sequenced two mitochondrial (cytochrome oxidase c subunit I and cytochrome β) and two nuclear (carbomoylphosphate synthase domain of rudimentary and elongation factor‐1α) gene fragments to reconstruct phylogenetic relationships among the subgenera Chamaedipsia, Eucelidia, Philolutra, Pseudowiedemannia, Roederella and Wiedemannia (s.s.) using both Bayesian inference and maximum likelihood approaches. The genus was found to be monophyletic, but most of the subgenera were not. We propose eliminating the present subgeneric division altogether. Molecular dating using a log‐normal clock model and calibration with fossil species indicated that Wiedemannia diversified about 48 Ma, while there was still land connectivity between Europe and Asia with North America. Wiedemannia has a near‐worldwide distribution apart from the Australasian and Neotropical regions and Antarctica, with greatest species richness in the western Palaearctic, especially the Mediterranean region. Molecular phylogenetics support more recent morphological studies. The subgenera of Wiedemannia are invalid and rejected. Biogeographical data suggest potential hotspots, and the current distribution is discussed.  相似文献   

4.
5.
6.
The morphology and phylogeny of four oligotrichid ciliates, Parallelostrombidium paraellipticum sp. n., P. dragescoi sp. n., P. jankowskii (Xu et al. 2009) comb. n., and P. kahli (Xu et al. 2009) comb. n., are described or redescribed based on live observation, protargol stained material, and SSU rRNA gene sequences. The new species P. paraellipticum sp. n. is characterized by its obovoidal cell shape, adoral zone composed of 17–21 collar, 9–11 buccal, and two thigmotactic membranelles, and extrusomes attached in one row along the girdle kinety. The new species P. dragescoi sp. n. is distinguished from its congeners by its obovoidal cell shape and a lack of thigmotactic membranelles. Based on ciliary patterns recognizable in the original slides, Omegastrombidium jankowskii Xu et al. 2009 and O. kahli Xu et al. 2009 should be transferred to the genus Parallelostrombidium Agatha 2004. Phylogenetic analyses based on SSU rRNA gene sequence data demonstrate that all four new sequences cluster with previously described congeners. The genus Parallelostrombidium is separated into two clusters, suggesting its non‐monophyly and probably corresponding to the two subgenera proposed by Agatha and Strüder‐Kypke (2014), as well as their morphological difference (cell dorsoventrally flattened vs. unflattened).  相似文献   

7.
Polygonatum is the largest and most complex genus in tribe Polygonateae, comprising approximately 57 species widely distributed in the warm temperate, subtropical and boreal zones of the Northern Hemisphere. However, phylogenetic relationships in the genus remain poorly understood. The objectives of this study were to reconstruct the phylogenetic relationships of the genus using four plastid markers, and to examine the evolution of leaf arrangement in Polygonatum in the phylogenetic context of its closely related taxa. Thirty Polygonatum species were sampled to infer phylogenetic relationships using maximum‐likelihood and Bayesian analyses. The evolution of leaf arrangements was reconstructed using Bayesian, parsimony and likelihood methods. The phylogenetic analyses supported the current generic delimitation of Polygonatum, with Heteropolygonatum recognized as a distinct genus. Three major lineages in Polygonatum were well supported, largely correlated with geographical distribution and the most recent classification at the sectional level. However, our results did not support the currently recognized series, especially the two large series Verticillata and Alternifolia. Bayesian analyses support the alternate‐leaf arrangement as the ancestral state for Polygonatum, but parsimony and maximum‐likelihood analyses suggest an equivocal state for crown Polygonatum. Leaf arrangement was found to be evolutionarily labile. A new nomenclatural combination was made: P olygonatum section S ibirica (L.I.Abramova) Y.Meng, comb. nov. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 435–451.  相似文献   

8.
The monophyly of the North and South American endemic subtribe Blapstinina (Tenebrionidae: Opatrini) is tested through phylogenetic analyses using five molecular markers [nuclear ribosomal 28S (28S), cytochrome oxidase subunit II (COII), arginine kinase (ArgK), carbamoyl-phosphate synthetase domain of rudimentary (CAD), wingless (wg)]. Representatives of several opatrinoid subtribes were taken into consideration, including other geographically overlapping endemic genera, namely Ammodonus, Ephalus and Pseudephalus (all previously considered representatives of Ammobiina). A comparative study of morphology was performed to assess resulting phylogenetic hypotheses. Analyses support the monophyly of Blapstinina; however, they also strongly indicate that Ammodonus should be included within the subtribe. Mecysmus is nested within Blapstinus and therefore, a new synonymy, Blapstinus (= Mecysmus syn.n. ), and the following combinations are introduced: Blapstinus advena comb.n. , B. angustus comb.r. , B. laticollis comb.n. , B. parvulus comb.n. , B. tenuis comb.n. Morphological analysis showed a close affiliation between Ephalus and Pseudephalus. Based on these results, Pseudephalus is synonymized with Ephalus [Ephalus (= Pseudephalus syn.n. )], and the following combination is introduced: Ephalus brevicornis comb.n. Recovered topologies also strongly support transferring Ephalus stat.n. into Opatrina, making the distribution of Opatrina amphi-Atlantic.  相似文献   

9.
10.
The evolution of anopheline mosquitoes (Culicidae: Anophelinae) has been the subject of speculation and study for decades, but a comprehensive phylogeny of these insects is far from complete. The results of phylogenetic studies based on morphological and molecular data sets are conspicuously ambiguous. Here, we revisit the phylogenetic relationships of anopheline mosquitoes using state‐of‐the‐art software and cladistic methods to analyse the data set of Harbach & Kitching (2005). We present a refined interpretation of relationships based on analyses of a revised data set that includes an additional species. Implied weighting analyses were conducted with TNT with the concavity constant K ranging from 1 to 33. We determined the optimal K value by summing the GC supports for each MPC and selected the tree with the highest support, = 30, as the preferred cladogram. We then collapsed the branches with GC support < 1 to obtain the ‘best’ topography of relationships. Genus Chagasia is the basalmost taxon of Anophelinae, and genus Anopheles is recovered as monophyletic but only if Anopheles implexus is excluded and genus Bironella is subordinated within it. The Afrotropical Animplexus is recovered as the sister to all other anophelines, and Christya Theobald, stat. nov., is elevated from synonymy with Anopheles Meigen as a subgenus to accommodate it. The other anophelines comprise two large clades. The first includes the reciprocally monophyletic subgenera Kerteszia + Nyssorhynchus; the second consists of subgenus Cellia as the sister to a heterogeneous clade that includes genus Bironella and subgenera Anopheles, Baimaia, Lophopodomyia and Stethomyia of genus Anopheles. The sister relationship of Cellia and the heterogeneous clade is lost when the branches with GC <1 are collapsed. The monophyly and non‐monophyly of the informal subordinate taxa of subgenera Nyssorhynchus, Cellia and Anopheles, and also evolutionary scenarios, are discussed in relation to previous studies.  相似文献   

11.
The evolution of a secondary terrestrial lifestyle in diving beetles (Coleoptera: Dytiscidae) has never been analysed in a phylogenetic framework before. Here we study Terradessus caecus Watts, a terrestrial species of the subfamily Hydroporinae endemic to Australia. We infer its phylogenetic placement using Bayesian inference and maximum‐likelihood methods based on a multilocus molecular dataset. We also investigate the divergence time estimates of this lineage using a Bayesian relaxed clock approach. Finally, we infer ancestral ecological preferences using a likelihood approach. We recover T. caecus nested in the genus Paroster Sharp with strong support. Therefore, we establish a synonymy for both species of Terradessus with Paroster: Paroster caecus (Watts) n.comb . and Paroster anophthalmus (Brancucci & Monteith) n.comb . Paroster is an endemic Australian genus that has a remarkable number of subterranean species in underground aquifers with highly derived morphologies. Our results highlight one of the most remarkable radiations of aquatic beetles with independent ecological pathways likely linked to palaeoclimatic disruptions in the Neogene. Paroster caecus (Watts) n.comb . originated from a mid‐Miocene split following the onset of an aridification episode that has been ongoing to the present day. The deep changes in ecological communities in association with the drying‐out of palaeodrainage systems might have pushed this lineage to colonize a new niche in terrestrial habitats.  相似文献   

12.
A phylogenetic analysis of selected oestroid taxa based on 66 morphological traits and sequences from three nuclear protein‐coding genes (CAD, MAC, MCS) resolved the composition and phylogenetic position of the former subfamily Polleniinae of the Calliphoridae – here resurrected at family rank as Polleniidae Brauer & Bergenstamm, 1889 stat. rev. Six species are transferred from the family Rhinophoridae to the Polleniidae: the Palaearctic genus Alvamaja Rognes, along with its single species Alvamaja chlorometallica Rognes, and five Afrotropical species comprising the carinata‐group formerly in the genus Phyto Robineau‐Desvoidy but here assigned to genus Morinia Robineau‐Desvoidy, i.e. M. carinata (Pape, 1987) comb.n. , M. lactineala (Pape, 1997) comb.n. , M. longirostris (Crosskey, 1977) comb.n. , M. royi (Pape, 1997) comb.n. and M. stuckenbergi (Crosskey, 1977) comb.n. The Polleniidae are monophyletic and, in agreement with most recent phylogenetic reconstructions, sister to the Tachinidae. The female of A. chlorometallica and a new species of Morinia of the carinata‐group (Morinia tsitsikamma sp.n. from South Africa) are described. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:25B0C220‐DEE4‐4B0C‐88EA‐35FDE298EBC5 .  相似文献   

13.
The phylogenetic relationships between western Palaearctic Zamenis and Rhinechis ratsnakes have been troubled, with recent estimates based on the supermatrix approach questioning their monophyly and providing contradictory results. In this study, we generated a comprehensive molecular data set for Zamenis and closely related ratsnakes to assess their phylogenetic and systematic relationships and infer their spatial and temporal modes of diversification. We obtained a fully resolved and well‐supported phylogeny, which is consistent across markers, taxon‐sets and phylogenetic methods. The close phylogenetic relationship between Rhinechis and Zamenis is well‐established. However, the early branching pattern within this clade, and the position of R. scalaris and Z. hohenackeri, remains poorly supported. The Persian ratsnake Z. persicus is sister to the Mediterranean species Z. situla, Z. longissimus and Z. lineatus, of which Z. situla is sister to a clade containing the latter two species. These results are consistent with a recent phylogenomic study on ratsnakes based on hundreds of loci. Whereas, topological tests based on our data and evidence from such phylogenomic study strongly rejected previous phylogenetic estimates based on the supermatrix approach and demonstrate that these “mega‐phylogenies”, with hundreds of taxa and high levels of missing data, have recovered inconsistent relationships with spurious nodal support. Biogeographical and molecular dating analyses suggest an origin of the ancestor of Rhinechis and Zamenis in the Aegean region with early cladogenesis during the Late Miocene associated with the Aegean arch formation and support a scenario of east‐to‐west diversification. Finally, while we have little morphological and phylogenetic evidence for the distinctiveness between Rhinechis and Zamenis, a classification of them in a single genus, and the designation of Zamenis scalaris (Schinz, 1822), reflects better their evolutionary relationships.  相似文献   

14.
We evaluate the phylogenetic and biogeographical relationships of the members of the family Pettalidae (Opiliones, Cyphophthalmi), a textbook example of an ancient temperate Gondwanan taxon, by means of DNA sequence data from four markers. Taxon sampling is optimized to cover more than 70% of the described species in the family, with 117 ingroup specimens included in the analyses. The data were submitted to diverse analytical treatments, including static and dynamic homology, untrimmed and trimmed alignments, and a variety of optimality criteria including parsimony and maximum‐likelihood (traditional search and Bayesian). All analyses found strong support for the monophyly of the family Pettalidae and of all its genera, with the exception of Speleosiro, which is nested within Purcellia. However, the relationships among genera are poorly resolved, with the exceptions of a first split between the South African genus Parapurcellia and the remaining species, and, less supported, a possible relationship between Chileogovea and the other South African genus Purcellia. The diversification of most genera is Mesozoic, and of the three New Zealand genera, two show evidence of constant diversification through time, contradicting scenarios of total submersion of New Zealand during the Oligocene drowning episode. The genera Karripurcellia from Western Australia and Neopurcellia from the Australian plate of New Zealand show a pattern typical of relicts, with ancient origin, depauperate extant diversity and recent diversification. The following taxonomic actions are taken: Milipurcellia Karaman, 2012 is synonymized with Karripurcellia Giribet, 2003 syn. nov. ; Speleosiro Lawrence, 1931 is synonymised with Purcellia Hansen & Sørensen, 1904 syn. nov . The following new combinations are proposed: Parapurcellia transvaalica (Lawrence, 1963) comb. nov. ; Purcellia argasiformis (Lawrence, 1931) comb. nov .  相似文献   

15.
The phylogenetic relationships between members of the South Asian family Psilorhynchidae are investigated using both mitochondrial and nuclear DNA sequence data. Phylogenetic hypotheses were derived from maximum likelihood and maximum parsimony analyses of a three gene concatenated data set, including cytochrome c oxidase subunit 1 (640 bp), cytochrome b (1140 bp) and exon 3 of the recombination‐activating gene 1 (~1500 bp). Our investigation provides strong support for the monophyly of two species groups of Psilorhynchus (the P. balitora and P. nudithoracicus species groups) and corroborates previous hypotheses on the phylogenetic position of the Western Ghats species Psilorhynchus tenura based on morphology. Basal relationships within Psilorhynchus were poorly supported and are worthy of further investigation. A fossil calibrated relaxed molecular clock estimates the split between Psilorhynchus and its sister group to have occurred within the Eocene/Oligocene, with subsequent diversification in the Miocene.  相似文献   

16.
Robust phylogenetic hypotheses have become key for studies addressing the evolutionary biology and ecology of various groups of organisms. In the species‐rich heteropteran superfamily Pentatomoidea, phylogenies at lower taxonomic levels are still scarce and mostly employ exclusively morphological data. In this study, we conducted a total evidence phylogeny focusing on the tribe Carpocorini (Pentatomidae), using morphological data and four DNA markers (COI, Cytb, 16S and 28S rDNA; ~2330 bp; 32 taxa) in order to investigate the relationships within Euschistus Dallas, one of the most speciose pentatomid genera, and between Euschistus and related genera. Our hypotheses generated by maximum likelihood and Bayesian inference show that the current taxonomic composition and classification of Euschistus and allied genera are in need of revision. Euschistus was recovered as nonmonophyletic, with the subgenera forming four independent lineages: Euschistus (Euschistus) and Euschistus (Lycipta) Stål are sister groups; Euschistus (Euschistomorphus) Jensen‐Haarup is more closely related to Dichelops Spinola and Agroecus Dallas; and Mitripus Rolston is divided into two clades closely related to Sibaria Stål and Ladeaschistus Rolston. We chose not to change the classification of E. (Euschistomorphus) until further data become available, and propose to split Euschistus into three genera with the exclusion of Euschistus (Mitripus) and all of its species. Here we elevate Mitripus to genus rank to include M. acutus comb.n. , M. convergens comb.n. and M. legionarius comb.n. , and propose Adustonotus Bianchi gen.n. to include A. anticus comb.n. , A. latus comb.n. , A. tauricornis comb.n. , A. grandis comb.n. , A. hansi comb.n. , A. paranticus comb.n. , A. irroratus comb.n. and A. saramagoi comb.n. We also provide identification keys to the genera Adustonotus gen.n. , Ladeaschistus, Mitripus n. rank and Sibaria, here defined as the Mitripus genus group, and to the species of Mitripus and Adustonotus gen.n. Our results provide insights into the current status of the classification of the Pentatomidae, suggesting the need for phylogenetic analyses at different taxonomic levels within stink bugs. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:E09D2675‐0F2B‐4AAE‐9837‐257E0B18BC52 .  相似文献   

17.
This study compiles previously published morphological, colour and behavioural characters and includes new DNA sequence data for eight markers (one mitochondrial and seven nuclear) to re‐evaluate phylogenetic relationships and estimate times of divergence for Morpho butterflies using parsimony and Bayesian methods. We note an effect of missing data on phylogenetic inference and calculations of Partitioned Bremer Support. Morphology and DNA trees were moderately congruent, and the combined analyses of all data included elements of both sources. Both morphology and DNA support the monophyly of Morpho and the early separation of the sister pair M. marcus plus M. eugenia, but trees from different data sources are congruent mostly at derived nodes, and differ at several internal nodes. The analyses of combined data indicate that Morpho is composed of four clades each of which include one or more previously proposed subgenera. The subgenera Pessonia and Morpho were not monophyletic, and to address this issue we propose that Pessonia, syn.nov. be subsumed within Morpho. The ancestor of Morpho probably arose during the Oligocene, and most diversification seems to have occurred during the late Miocene. S‐DIVA analysis suggests eastern Andean region as the ancestral area for Morpho, and that the South American Atlantic Forest was colonized multiple times.  相似文献   

18.
The water scavenger beetle tribe Hydrobiusini contains 47 species in eight genera distributed worldwide. Most species of the tribe are aquatic, although several species are known to occur in waterfalls or tree mosses. Some members of the tribe are known to communicate via underwater stridulation. While recent morphological and molecular‐based phylogenies have affirmed the monophyly of the tribe as currently circumscribed, doubts remain about the monophyly of included genera. Here we use morphological and molecular data to infer a species‐level phylogeny of the Hydrobiusini. The monophyly of the tribe is decisively supported, as is the monophyly of most genera. The genus Hydrobius was found to be polyphyletic, and as a result the genus Limnohydrobius stat. rev. is removed from synonymy with Hydrobius, yielding three new combinations: L. melaenus comb.n. , L. orientalis comb.n. , and L. tumbius comb.n. Recent changes to the species‐level taxonomy of Hydrobius are reviewed. The morphology of the stridulatory apparatus has undergone a single remarkable transformation within the lineage, from a simple, unmodified pars stridens to one that is highly organized and complex. We present an updated key to genera, revised generic diagnoses and a list of the known distributions for all species within the tribe.  相似文献   

19.
20.
The bee family Melittidae comprises a small, but biologically fascinating, group of mostly oligolectic bees, some of which are oil collecting. Phylogenetic relationships within this family are poorly understood and some genera cannot be placed with confidence at the subfamily level. We analysed melittid phylogeny using a combined dataset of five nuclear genes [28S, elongation factor‐1α (EF‐1α, F2 copy), long‐wavelength rhodopsin, Na‐K ATPase and RNA polymerase II] spanning 4842 bp plus 68 adult morphological characters. Our study included 25% of the species‐level diversity and 81% of the generic‐level diversity and included all previously recognized tribes and subfamilies. We analysed the dataset using parsimony, maximum likelihood and Bayesian methods. All methods yielded congruent results. All topologies recovered the three previously recognized subfamilies (Dasypodainae, Melittinae, Meganomiinae), but two genera (Afrodasypoda and Promelitta) are transferred from Dasypodainae to Melittinae. On the basis of our tree topologies we identify four tribes (Dasypodaini comb.n. , Hesperapini stat.n. , Macropidini comb.n. and Melittini), only one of which (Melittini) matches a widely used classification. Lastly, we discuss the evolution of host‐plant association in the light of our new phylogenetic hypothesis. Our results strongly support multiple independent origins of oil‐collecting behaviour in the Melittinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号