首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in neuronal migration and differentiation, and in axonal elongation. Although many studies have been conducted to analyze neuronal functions of Cdk5, its kinase activity has also been reported during oligodendrocyte differentiation, which suggests Cdk5 may play an important role in oligodendrocytes. Here, we describe a hypomyelination phenotype observed in Emx1-cre mediated Cdk5 conditional knockout (cKO) mice (Emx1-cKO), in which the Cdk5 gene was deleted in neurons, astrocytes and oligodendrocyte -lineage cells. In contrast, the Cdk5 gene in CaMKII cKO mice was deleted only in neurons. Because the development of mature oligodendrocytes from oligodendrocyte precursor cells is a complex process, we performed in situ hybridization using markers for the oligodendrocyte precursor cell and for the differentiated oligodendrocyte. Our results indicate that hypomyelination in Emx1-cKO is due to the impaired differentiation of oligodendrocytes, rather than to the proliferation or migration of their precursors. The present study confirmed the in vivo role of Cdk5 in oligodendrocyte differentiation.  相似文献   

2.
Oligodendrocytes are glial cells responsible for the synthesis and maintenance of myelin in the central nervous system (CNS). Oligodendrocytes are vulnerable to damage occurring in a variety of neurological diseases. Understanding oligodendrocyte biology is crucial for the dissemination of de- and remyelination mechanisms. The goal of the present study is the construction of a protein database of mature rat oligodendrocytes. Post-mitotic oligodendrocytes were isolated from mature Wistar rats and subjected to immunocytochemistry. Proteins were extracted and analyzed by means of two-dimensional gel electrophoresis and two-dimensional liquid chromatography, both coupled to mass spectrometry. The combination of the gel-based and gel-free approach resulted in confident identification of a total of 200 proteins. A minority of proteins were identified in both proteomic strategies. The identified proteins represent a variety of functional groups, including novel oligodendrocyte proteins. The results of this study emphasize the power of the applied proteomic strategy to study known or to reveal new proteins and to investigate their regulation in oligodendrocytes in different disease models.  相似文献   

3.
Oligodendrocytes, the myelinating cells of the central nervous system, are terminally differentiated cells that originate through asynchronous waves of proliferation and differentiation of precursors present at birth. Withdrawal from cell cycle and onset of differentiation are tightly linked and depend on an intrinsic program modulated by the action of growth factors. p27 plays a central and obligatory role in the initiation of oligodendrocyte differentiation and cessation of proliferation. In this paper, we have characterized the role of modulation of cdk2 and cdk5 kinase activity during the process of oligodendrocyte precursor differentiation. As rat primary oligodendrocytes differentiate in culture there is a fall in cdk2 activity and a rise in cdk5 activity as well as an increase in the cdk inhibitor, p27 protein. The decline in cdk2 activity is not accompanied by a drop in cdk2 protein level, suggesting that it results from inhibition of cdk2 activation rather than decreased protein expression. Taken together, these data suggest that oligodendrocytes may withdraw from the cell cycle at G1-S transition through inactivation of cdk2 activity, possibly initiated by increasing amount of p27, and that cdk5 may have a role until now unrecognized in the differentiation of oligodendrocytes. J. Cell. Biochem. 68:128–137, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
A novel rat tetraspan protein in cells of the oligodendrocyte lineage   总被引:1,自引:0,他引:1  
The tetraspanin/transmembrane 4 superfamily gene superfamily encodes proteins that span the plasma membrane four times. Tetraspan proteins are implicated in proliferation, motility, and differentiation in various cell types, and in some cells they may link plasma membrane proteins into signalling complexes. Using a subtractive cDNA library prepared from oligodendrocytes and their progenitor cells, we have identified Tspan-2 as a member of this superfamily. In situ hybridization analysis revealed robust expression in cells of the oligodendrocyte lineage in comparison with the Plp gene, a well-characterized marker for myelin-forming glia in the CNS. Rat Tspan-2 mRNA is restricted to the nervous system and is detectable by northern blot shortly after birth in the CNS. Subsequently the gene is up-regulated strongly between postnatal day 3 and 10, and expression levels continue to rise up to postnatal day 22. These data indicate that Tspan-2 is likely to play a role in signalling in oligodendrocytes in the early stages of their terminal differentiation into myelin-forming glia and may also function in stabilizing the mature sheath.  相似文献   

5.
Oligodendrocytes are a type of neuroglia that provide trophic support and insulation to axons in the central nervous system. The genesis and maturation of oligodendrocytes are essential processes for myelination and the course of CNS development. Using ion mobility‐enhanced, data‐independent acquisitions and 2D‐nanoUPLC fractionation operating at nanoscale flow rates, we established a comprehensive data set of proteins expressed by the human oligodendroglia cell line MO3.13. The final dataset incorporating all fractions comprised 223 531 identified peptides assigned to 10 390 protein hits, an improvement of 4.5 times on identified proteins described previously by our group using the same cell line. Identified proteins play pivotal roles in many biological processes such as cell growth and development and energy metabolism, providing a rich resource for future studies on oligodendrocyte development, myelination, axonal support, and the regulation of such process. Our results can help further studies that use MO3.13 cells as a tool of investigation, not only in relation to oligodendrocyte maturation, but also to diseases that have oligodendrocytes as key players. All MS data have been deposited in the ProteomeXchange with identifier PXD004696.  相似文献   

6.
Dramatic changes in morphology and myelin protein expression take place during the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes. Fyn tyrosine kinase was reported to play a central role in the differentiation process. Molecules that could induce Fyn signaling have not been studied. Such molecules are promising therapeutic targets in demyelinating diseases. We provide evidence that the common gamma chain of immunoglobulin Fc receptors (FcRgamma) is expressed in OPCs and has a role in triggering Fyn signaling. FcRgamma cross-linking by immunoglobulin G on OPCs promotes the activation of Fyn signaling and induces rapid morphological differentiation with upregulation of myelin basic protein (MBP) expression levels. Mice deficient in FcRgamma are hypomyelinated, and a significant reduction in MBP content is evident. Our findings indicate that the FcRgamma-Fyn-MBP cascade is pivotal during the differentiation of OPCs into myelinating oligodendrocytes, revealing an unexpected involvement of immunological molecules.  相似文献   

7.
PRMT5 is a type II protein arginine methyltranferase that catalyzes monomethylation and symmetric dimethylation of arginine residues. PRMT5 is functionally involved in a variety of biological processes including embryo development and circadian clock regulation. However, the role of PRMT5 in oligodendrocyte differentiation and central nervous system myelination is unknown. Here we show that PRMT5 expression gradually increases throughout postnatal brain development, coinciding with the period of active myelination. PRMT5 expression was observed in neurons, astrocytes, and oligodendrocytes. siRNA-mediated depletion of PRMT5 in mouse primary oligodendrocyte progenitor cells abrogated oligodendrocyte differentiation. In addition, the PRMT5-depleted oligodendrocyte progenitor and C6 glioma cells expressed high levels of the inhibitors of differentiation/DNA binding, Id2 and Id4, known repressors of glial cell differentiation. We observed that CpG-rich islands within the Id2 and Id4 genes were bound by PRMT5 and were hypomethylated in PRMT5-deficient cells, suggesting that PRMT5 plays a role in gene silencing during glial cell differentiation. Our findings define a role of PRMT5 in glial cell differentiation and link PRMT5 to epigenetic changes during oligodendrocyte differentiation.  相似文献   

8.
Abstract: Krox proteins are important regulators of development and terminal differentiation. Using the rat glial progenitor cell line CG-4 as a model system for oligodendrocyte differentiation, we show that on the RNA level Krox-24 is the predominant member of the Krox family in these cells. Similar results were also obtained on the protein level as the major Krox protein from CG-4 cell extracts reacted specifically with an antibody against Krox-24. Whereas Krox-24 RNA and protein were abundant in undifferentiated CG-4 cells, a dramatic decrease in expression was detected after a 3–5-day period of differentiation during which we observed a reciprocal increase in the levels of myelin basic protein expression. Importantly, regulation of Krox-24 expression was very similar in CG-4 cells and primary oligodendrocyte cultures. When expression of Krox-24 in differentiating CG-4 cells was followed on a closer time scale, we observed a sharp and transient increase in Krox-24 RNA, protein, and DNA binding activity immediately after the onset of differentiation followed by an equally rapid decrease. This expression pattern implicates Krox-24 both in maintenance of the undifferentiated state and in the immediate early phase of differentiation of CG-4 cells and possibly oligodendrocytes.  相似文献   

9.
Oligodendrocyte precursor cells modify the neural cell adhesion molecule (NCAM) by the attachment of polysialic acid (PSA). Upon further differentiation into mature myelinating oligodendrocytes, however, oligodendrocyte precursor cells down-regulate PSA synthesis. In order to address the question of whether this down-regulation is a necessary prerequisite for the myelination process, transgenic mice expressing the polysialyltransferase ST8SiaIV under the control of the proteolipid protein promoter were generated. In these mice, postnatal down-regulation of PSA in oligodendrocytes was abolished. Most NCAM-120, the characteristic NCAM isoform in oligodendrocytes, carried PSA in the transgenic mice at all stages of postnatal development. Polysialylated NCAM-120 partially co-localized with myelin basic protein and was present in purified myelin. The permanent expression of PSA-NCAM in oligodendrocytes led to a reduced myelin content in the forebrains of transgenic mice during the period of active myelination and in the adult animal. In situ hybridizations indicated a significant decrease in the number of mature oligodendrocytes in the forebrain. Thus, down-regulation of PSA during oligodendrocyte differentiation is a prerequisite for efficient myelination by mature oligodendrocytes. Furthermore, myelin of transgenic mice exhibited structural abnormalities like redundant myelin and axonal degeneration, indicating that the down-regulation of PSA is also necessary for myelin maintenance.  相似文献   

10.
Regulation of oligodendrocyte development   总被引:7,自引:0,他引:7  
Oligodendrocytes are the cells responsible for the formation of myelin in the central nervous system. Recent studies demonstrated that cells of the oligodendrocyte lineage initially arise in distinct regions of the ventricular zone during early development. These cells or their progeny migrate to developing white matter tracts where they undergo the majority of their proliferation and subsequently differentiate into myelinating cells. Oligodendrocyte-precursor cell proliferation is regulated by a number of distinct growth factors that act at distinct stages in the lineage and the final number of oligodendrocytes in any region of the CNS is regulated by local influences. A density-dependent feedback inhibition of proliferation reduces the responsiveness of the cells to their growth factors and the final matching of oligodendrocyte and axon number is accomplished through the local regulation of cell death. In this review, we discuss the major factors that regulate three distinct stages in the development of the oligodendrocyte lineage: The initial induction of oligodendrocyte progenitors, the regulation of expansion and dispersion of the committed precursor cell population, and the final regulation of oligodendrocyte precursor number through the local inhibition of oligodendrocyte precursor proliferation and cell death.  相似文献   

11.
Oligodendrocyte differentiation is accompanied by dramatic changes in gene expression as well as cell cycle arrest. To determine whether cell cycle arrest is sufficient to induce the changes in cell phenotype associated with differentiation, we inhibited oligodendrocyte precursor proliferation in vitro by overexpressing p27, a cyclin kinase inhibitor, using a recombinant adenovirus. Ectopic expression of p27 efficiently inhibited oligodendrocyte precursor cell division, even in the presence of exogenous mitogens, by blocking the activity of the cyclin-dependent kinase, cdk2. Although the cells had stopped dividing, they did not express galactocerebroside (GalC) or myelin basic protein (MBP), changes associated with oligodendrocyte differentiation, suggesting that they had not differentiated. After removal of exogenous mitogens, however, adenovirus-expressing oligodendrocyte precursors differentiated with a temporal profile similar to that of control, uninfected oligodendrocytes, as indicated by expression of GalC and MBP. We conclude that cell cycle arrest is not sufficient to induce differentiation of dividing oligodendrocyte precursors, and that modulation of additional, as yet unknown, signaling pathways is required for this to occur.  相似文献   

12.
Current methods for studying central nervous system myelination necessitate permissive axonal substrates conducive to myelin wrapping by oligodendrocytes. We have developed a neuron-free culture system in which electron-spun nanofibers of varying sizes substitute for axons as a substrate for oligodendrocyte myelination, thereby allowing manipulation of the biophysical elements of axonal-oligodendroglial interactions. To investigate axonal regulation of myelination, this system effectively uncouples the role of molecular (inductive) cues from that of biophysical properties of the axon. We use this method to uncover the causation and sufficiency of fiber diameter in the initiation of concentric wrapping by rat oligodendrocytes. We also show that oligodendrocyte precursor cells display sensitivity to the biophysical properties of fiber diameter and initiate membrane ensheathment before differentiation. The use of nanofiber scaffolds will enable screening for potential therapeutic agents that promote oligodendrocyte differentiation and myelination and will also provide valuable insight into the processes involved in remyelination.  相似文献   

13.
The generation of myelinating cells from multipotential neural stem cells in the CNS requires the initiation of specific gene expression programs in oligodendrocytes (OLs). We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating genes crucial for OL development. Here we identified miR-7a as one of the highly enriched miRNAs in oligodendrocyte precursor cells (OPCs), overexpression of which in either neural progenitor cells (NPCs) or embryonic mouse cortex promoted the generation of OL lineage cells. Blocking the function of miR-7a in differentiating NPCs led to a reduction in OL number and an expansion of neuronal populations simultaneously. We also found that overexpression of this miRNA in purified OPC cultures promoted cell proliferation and inhibited further maturation. In addition, miR-7a might exert the effects just mentioned partially by directly repressing proneuronal differentiation factors including Pax6 and NeuroD4, or proOL genes involved in oligodendrocyte maturation. These results suggest that miRNA pathway is essential in determining cell fate commitment for OLs and thus providing a new strategy for modulating this process in OL loss diseases.  相似文献   

14.
The proneural gene Ascl1 promotes formation of both neurons and oligodendrocytes from neural stem cells (NSCs), but it remains to be analyzed how its different functions are coordinated. It was previously shown that Ascl1 enhances proliferation of NSCs when its expression oscillates but induces differentiation into transit-amplifying precursor cells and neurons when its expression is up-regulated and sustained. By time-lapse imaging and immunohistological analyses, we found that Ascl1 expression oscillated in proliferating oligodendrocyte precursor cells (OPCs) at lower levels than in transit-amplifying precursor cells and was repressed when OPCs differentiated into mature oligodendrocytes. Induction of sustained overexpression of Ascl1 reduced oligodendrocyte differentiation and promoted neuronal differentiation. These results suggest that oscillatory expression of Ascl1 plays an important role in proliferating OPCs during oligodendrocyte formation.  相似文献   

15.
We have previously shown that generation of sublytic C5b-9, the membrane attack complex of complement, induces oligodendrocytes to enter cell cycle and reduces apoptotic cell death in vitro. In the present study, the cellular factors involved in apoptosis of oligodendrocyte progenitor cells and oligodendrocytes, and the inhibitory effect of C5b-9 on apoptotic process were investigated. Oligodendrocyte progenitor cells identified by mAb A2B5 that were isolated from neonatal rat brains were differentiated into oligodendrocytes in serum-free defined medium. The differentiation, which occurs simultaneously with apoptotic cell death, was associated with a rapid loss of bcl-2 mRNA and increased expression of caspase-3 mRNA. Activation of caspase-3 in differentiating cells was demonstrated by the generation of 17- and 12-kDa fragments of caspase-3 proenzyme and by cleavage of poly(ADP-ribose) polymerase, a specific caspase-3 substrate. Cell death associated with differentiation was inhibited by the caspase-3 inhibitor DEVD-CHO in a dose-dependent manner. Assembly of sublytic C5b-9 resulted in inhibition of caspase-3 activation. In addition, synthesis of BCL-2 protein in oligodendrocytes was significantly increased by C5b-9. The TNF-alpha-induced apoptosis of oligodendrocytes was also inhibited by C5b-9. These results indicate that up-regulation of BCL-2 protein and inhibition of caspase-3 activation are potential mechanisms by which C5b-9 increases survival of oligodendrocyte in vitro and possibly in vivo during inflammation and immune-mediated demyelination affecting the CNS.  相似文献   

16.
Oligodendrocyte-specific protein (OSP)/claudin-11 is a major component of central nervous system myelin and forms tight junctions (TJs) within myelin sheaths. TJs are essential for forming a paracellular barrier and have been implicated in the regulation of growth and differentiation via signal transduction pathways. We have identified an OSP/claudin-11-associated protein (OAP)1, using a yeast two-hybrid screen. OAP-1 is a novel member of the tetraspanin superfamily, and it is widely expressed in several cell types, including oligodendrocytes. OAP-1, OSP/claudin-11, and beta1 integrin form a complex as indicated by coimmunoprecipitation and confocal immunocytochemistry. Overexpression of OSP/claudin-11 or OAP-1 induced proliferation in an oligodendrocyte cell line. Anti-OAP-1, anti-OSP/claudin-11, and anti-beta1 integrin antibodies inhibited migration of primary oligodendrocytes, and migration was impaired in OSP/claudin-11-deficient primary oligodendrocytes. These data suggest a role for OSP/claudin-11, OAP-1, and beta1 integrin complex in regulating proliferation and migration of oligodendrocytes, a process essential for normal myelination and repair.  相似文献   

17.
The timing of oligodendrocyte development is regulated by thyroid hormone (TH) in vitro and in vivo, but it is still uncertain which TH receptors mediate this regulation. TH acts through nuclear receptors that are encoded by two genes, TRalpha and TRbeta. Here, we provide direct evidence for the involvement of the TRalpha1 receptor isoform in vivo, by showing that the number of oligodendrocytes in the postnatal day 7 (P7) and P14 optic nerve of TRalpha1-/- mice is decreased compared with normal. We demonstrate that TRalpha1 mediates the normal differentiation-promoting effect of TH on oligodendrocyte precursor cells (OPCs): unlike wild-type OPCs, postnatal TRalpha1-/- OPCs fail to stop dividing and differentiate in response to TH in culture. We also show that overexpression of TRalpha1 accelerates oligodendrocyte differentiation in culture, suggesting that the level of TRalpha1 expression is normally limiting for TH-dependent OPC differentiation. Finally, we provide evidence that the inhibitory isoforms of TRalpha are unlikely to play a part in the timing of OPC differentiation.  相似文献   

18.
Migration of oligodendrocyte precursors along axons is a necessary prerequisite for myelination, but little is known about underlying mechanisms. NG2 is a large membrane proteoglycan implicated in oligodendrocyte migration. Here we show that a PDZ domain protein termed syntenin-1 interacts with NG2 and that syntenin-1 is necessary for normal rates of migration. The association of syntenin-1 with NG2, identified in a yeast two-hybrid screen, was confirmed by colocalization of both proteins within processes of oligodendroglial precursor cells and by coimmunoprecipitation from cell extracts. Syntenin-1 also colocalizes with NG2 in "co-capping" assays, demonstrating a lateral association of both proteins in live oligodendrocytes. RNA interference-mediated down-regulation of syntenin-1 in glial cells results in a significant reduction of migration in vitro, as does the presence of polyclonal antibody against NG2. Thus syntenin plays a role in the migration of oligodendroglial precursors, and we suggest that NG2-syntenin-1 interactions contribute to this.  相似文献   

19.
Myelin-related disorders such as multiple sclerosis and leukodystrophies, for which restoration of oligodendrocyte function would be an effective treatment, are poised to benefit greatly from stem cell biology. Progress in myelin repair has been constrained by difficulties in generating pure populations of oligodendrocyte progenitor cells (OPCs) in sufficient quantities. Pluripotent stem cells theoretically provide an unlimited source of OPCs, but current differentiation strategies are poorly reproducible and generate heterogenous populations of cells. Here we provide a platform for the directed differentiation of pluripotent mouse epiblast stem cells (EpiSCs) through defined developmental transitions into a pure population of highly expandable OPCs in 10 d. These OPCs robustly differentiate into myelinating oligodendrocytes in vitro and in vivo. Our results demonstrate that mouse pluripotent stem cells provide a pure population of myelinogenic oligodendrocytes and offer a tractable platform for defining the molecular regulation of oligodendrocyte development and drug screening.  相似文献   

20.
Over a century ago, hyperplasia and hypertrophy of astrocytes was noted as a histopathological hallmark of multiple sclerosis and was hypothesized to play an important role in the development and course of this disease. However until today, the factual contribution of astrocytes to multiple sclerosis is elusive. Astrocytes may play an active role during degeneration and demyelination by controlling local inflammation in the CNS, provoking damage of oligodendrocytes and axons, and glial scarring but might also be beneficial by creating a permissive environment for remyelination and oligodendrocyte precursor migration, proliferation, and differentiation. Recent findings from our lab suggest that brain lipid binding protein (FABP7) is implicated in the course of multiple sclerosis and the regulation of astrocyte function. The relevance of our findings and data from other groups are highlighted and discussed in this paper in the context of myelin repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号