首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Dilz 《Plant and Soil》1981,61(1-2):269-276
Summary From 1971 to 1979 field trials with increasing rates of fertilizer nitrogen on spring barley with sugar beet as the preceding crop were conducted on a farm on sandy loam in the south western part of The Netherlands. Prior to sowing and fertilizing soil samples were taken and analysed for mineral nitrogen (Nmin). The average yield increase through application of fertilizer nitrogen was only 750 kg of grain per ha per year, the maximum yield being about 5 tonnes per ha. In the case of a fixed rate of fertilizer nitrogen per annum it can be derived from the response curves that 60 kg of N would have given the smallest average yield deficit (170 kg grain per ha) in comparison with maximum yields. With an N-advisory system based on soil analysis the average yield deficit would be at a minimum (163 kg of grain per ha) with a value for mineral soil nitrogen+fertilizer nitrogen totalling 120 kg N per ha.No relationship was found between optimum rate of fertilizer nitrogen and the amount of mineral soil nitrogen at the end of the winter. This was ascribed to the relatively small variation in mineral soil nitrogen and the weak response of the crop to fertilizer nitrogen.Promising results from nitrogen fertilizing systems based on soil analysis can be expected from more responsive crops like winter wheat, sugar beets and potatoes.With the average yield deficit compared with maximum yield as a characteristic, the usefulness of any N-advisory system can be compared, taking a fixed rate of nitrogen system as a standard.Seconded by the Agricultural Bureau of the Netherlands Fertilizer Industry (LBNM).  相似文献   

2.
The lack of good irrigation practices and policy reforms in Pakistan triggers major threats to the water and food security of the country. In the future, irrigation will happen under the scarcity of water, as inadequate irrigation water becomes the requirement rather than the exception. The precise application of water with irrigation management is therefore needed. This research evaluated the wheat grain yield and water use efficiency (WUE) under limited irrigation practices in arid and semi-arid regions of Pakistan. DSSAT was used to simulate yield and assess alternative irrigation scheduling based on different levels of irrigation starting from the actual irrigation level up to 65% less irrigation. The findings demonstrated that different levels of irrigation had substantial effects on wheat grain yield and total water consumption. After comparing the different irrigation levels, the high amount of actual irrigation level in semi-arid sites decreased the WUE and wheat grain yield. However, the arid site (Site-1) showed the highest wheat grain yield 2394 kg ha?1 and WUE 5.9 kg?3 on actual irrigation (T1), and with the reduction of water, wheat grain yield decreased continuously. The optimal irrigation level was attained on semi-arid (site-2) with 50% (T11) less water where the wheat grain yield and WUE were 1925 kg ha?1 and 4.47 kg?3 respectively. The best irrigation level was acquired with 40% less water (T9) on semi-arid (site-3), where wheat grain yield and WUE were 1925 kg ha?1 and 4.57 kg?3, respectively. The results demonstrated that reducing the irrigation levels could promote the growth of wheat, resulting in an improved WUE. In crux, significant potential for further improving the efficiency of agricultural water usage in the region relies on effective soil moisture management and efficient use of water.  相似文献   

3.
Biochar is beneficial for improving soil quality and crop productivity. However, the long‐term effects of biochar addition on temporal dynamics of plant shoot and root growth, and the changes in soil properties and nitrogen (N) leaching are still obscure. Here, based on a long‐term (7 years) biochar field experiment with rice in northwest China, we investigated the effects of two biochar rates (0 and 9 t ha?1 year?1) and two N fertilizer rates (0 and 300 kg N ha?1 year?1) on shoot and root growth, root morphology, N leaching, and soil physicochemical properties. The results showed that both biochar and N fertilizer significantly promoted rice growth, with their interaction significant only in some cases. Both fertilizers enhanced rice shoot biomass and N accumulation in various growth stages as well as increased grain yield. Nitrogen fertilizer significantly promoted root growth regardless of biochar application. However, biochar application without N fertilizer increased root biomass and length during the whole growth period, except in the booting stage; biochar with N application promoted root growth at tillering, reduced root biomass but maintained root length with low root diameter and high specific root length during the jointing and booting stages, and then delayed root senescence in the grain filling stage. Long‐term applications of biochar and N fertilizer reduced 10%–12% bulk density of topsoil compared to the control treatment with no N fertilizer and no biochar. Long‐term biochar application also improved soil total organic carbon and concentrations of available N, phosphorus, and potassium. In addition, biochar and N fertilizer applied together significantly reduced nitrate and ammonium concentration in leachate at different soil depths. In conclusion, biochar could regulate root growth, root morphology, soil properties, and N leaching to increase rice N fertilizer‐use efficiency.  相似文献   

4.
Nitrogen fertilizer is one of the key elements to increase the yield and significance of winter wheat. The experiment was established in the split zone design and was repeated three times. The nitrogen application level is set to 4 treatments, 75, 150, 225 and 300 kg ha−1 are arranged in the main plot, and different nitrogen application ratios are arranged in the sub-plots, respectively 5:5 (50%+50%) and 6: 4 (60%) + 40%). Nitrogen fertilizer was applied before sowing, jointing stage, flowering stage and filling stage. The experimental plot is 12 m2 (3 m × 4 m). The results showed that under the conditions of 225 kg/hm2 nitrogen application and 60%+40% nitrogen application rate, the yield of Jintai 182 was the highest compared with other treatment groups. With the increase of nitrogen application rate, the number of ears, grains per ear, thousand-grain weight and grain yield all increase first and then decrease. Each factor reached the highest 225 N kg / hm2, 417.17, 30.74, 40.96 g and 6182.11 kg / hm2. Compared with 75 kg/hm2 topdressing fertilizer, 225 kg/hm2 is a more suitable nitrogen fertilizer application rate for winter wheat. Within a reasonable range of nitrogen fertilizer application, there is a significant positive correlation between nitrogen content and winter wheat yield. By studying the amount of nitrogen fertilizer and a reasonable ratio of base fertilizer to topdressing, the utilization rate of nitrogen fertilizer can be maximized and excessive application of nitrogen fertilizer can be avoided.  相似文献   

5.
The present study was undertaken to assess the benefit and compare the functioning of AM fungi on wheat grown conventionally and on beds. Ten treatment combinations were used, treatments 1 and 2: no fertilizers with and without arbuscular mycorrhizal (AM) fungi (In vitro produced Glomus intraradices); 3:100% of recommended NPK: (120 kg ha−1 N; 60 kg ha−1 P; 50 kg ha−1 K), and 4 and 5: 75% of recommended NPK dose with and without AM inoculation in a 5 × 2 split-plot design on wheat using conventional/flat system and elevated/raised bed system. The maximum grain yield (3.84 t ha−1) was obtained in AM fungi inoculated plots of raised bed system applied with 75% NPK and was found higher (although non- significant) than the conventional (3.73 t ha−1) system. The AM inoculation at 75% fertilizer application can save 8.47, 5.38 kg P and 16.95, 10.75 kg N ha−1, respectively, in bed and conventional system. While comparing the yield response with 100% fertilizer application alone, AM inoculation was found to save 20.30, 15.79 kg P and 40.60, 31.59 kg N ha−1, respectively, in beds and conventional system. Mycorrhizal inoculation at 75% NPK application particularly in raised bed system seems to be more efficient in saving fertilizer inputs and utilizing P for producing higher yield and growth unlike non-mycorrhizal plants of 100% P. Besides the yield, mycorrhizal plants grown on beds had higher AM root colonization, soil dehydrogenases activity, and P-uptake. The present study indicates that the inoculation of AM fungi to wheat under raised beds is better response (although non-significantly higher) to conventional system and could be adopted for achieving higher yield of wheat at reduced fertilizer inputs after field validation.  相似文献   

6.
Rhizosphere microbial community is important for the acquisition of soil nutrients and closely related to plant species. Fertilisation practice changed soil quality. With the hypothesis of stronger rhizosphere effect of plant on rhizosphere microbial community than fertilisation management, we designed this research based on a long‐term field experiment (1982–present). This study consists of no fertilisation (NF), mineral fertilisers (NPK), mineral fertilisers plus 7,500 kg/ha of wheat straw addition (WS) and mineral fertilisers plus 30,000 kg/ha of cow manure (CM). After analysing, we found that fertilisation management not only elevated crop yield but also affected crop rhizosphere microbial community structure. The influence of fertilisation practice on wheat rhizosphere microbial structure was stronger than that of wheat. For wheat rhizosphere bacterial community, it was significantly affected by soil water content (SWC), nitrogen (TN), phosphorus (TP), pH, available phosphorus (AVP) and nitrogen (AVN), dissolved organic nitrogen (DON) and carbon (DOC). Besides SWC, pH, AVP, AVN, TN, TP and DOC, the wheat rhizosphere fungi community was also significantly affected by soil organic matter (SOM) and available potassium (AVK). Moreover, compared to rhizosphere bacterial community, the influences of soil physiochemical properties on rhizosphere fungal community was stronger. In conclusion, fertilisation practice was the primary factor structuring rhizosphere microbial community by changing soil nutrients availabilities in the agroecosystem.  相似文献   

7.
Increasing soil organic carbon (SOC) via organic inputs is a key strategy for increasing long‐term soil C storage and improving the climate change mitigation and adaptation potential of agricultural systems. A long‐term trial in California's Mediterranean climate revealed impacts of management on SOC in maize‐tomato and wheat–fallow cropping systems. SOC was measured at the initiation of the experiment and at year 19, at five depth increments down to 2 m, taking into account changes in bulk density. Across the entire 2 m profile, SOC in the wheat–fallow systems did not change with the addition of N fertilizer, winter cover crops (WCC), or irrigation alone and decreased by 5.6% with no inputs. There was some evidence of soil C gains at depth with both N fertilizer and irrigation, though high variation precluded detection of significant changes. In maize?tomato rotations, SOC increased by 12.6% (21.8 Mg C/ha) with both WCC and composted poultry manure inputs, across the 2 m profile. The addition of WCC to a conventionally managed system increased SOC stocks by 3.5% (1.44 Mg C/ha) in the 0–30 cm layer, but decreased by 10.8% (14.86 Mg C/ha) in the 30–200 cm layer, resulting in overall losses of 13.4 Mg C/ha. If we only measured soil C in the top 30 cm, we would have assumed an increase in total soil C increased with WCC alone, whereas in reality significant losses in SOC occurred when considering the 2 m soil profile. Ignoring the subsoil carbon dynamics in deeper layers of soil fails to recognize potential opportunities for soil C sequestration, and may lead to false conclusions about the impact of management practices on C sequestration.  相似文献   

8.
Soil nutrients and water have long been recognized as the main determining factors influencing agricultural productivity in rain-fed agriculture. Manure application and irrigation can increase crop yield when nutrients and water are deficient. Often effects of water and nutrients are closely related and can not be easily separated in actual production. Three years of experiment were conducted in northern part of black soil area of Northeast China to investigate the responses of photosynthetic rates and yield/quality of main crops, wheat (Triticum aestivum L.), maize (May zeas L.), soybean (Glycine max L. Merr.) to irrigation and manure application. Irrigation and manure application had no effects on photosynthetic patterns during reproductive development in crops, maximum photosynthetic rates were achieved by irrigation, and manure application maintained relatively higher photosynthetic rates after the peak. On average, higher photosynthetic rates with irrigation may contribute to higher yield in soybean but not in maize and wheat. Responses of crop yield and quality to manure application and irrigation varied in the crops. Soybean yield and quality was very sensitive to irrigation and manure application. The greater supply of nutrients with sufficient water, the higher the yield. However, the high-yield of soybean achieved was accompanied with a decline of seed protein content. Maize yield mainly depended on nutrients used not the water supply, irrigation resulted in higher water content in the seed of maize and lower grain protein content in wheat at harvest, which is detrimental to seed storage in maize and processing quality in wheat. In the northern part of black soil area in Northeast China, the management of manure is critical to improve crop production, the optimum management for maize and wheat production was to apply chemical fertilizer and manure without irrigation, but for soybean was to apply fertilizer and manure with irrigation.  相似文献   

9.
Improving nitrogen (N) use efficiency (NUE) in crop plants is important to reduce the negative impact of excessive N on the environment. Although biochar-blended fertilizer had been increasingly tested in crop production, the fate of fertilized N in soil and plant had not been elucidated in field conditions. In this study, a novel biochar-blended urea (BU) was prepared by pelleting maize straw biochar, bentonite, sepiolite, carboxymethylcellulose sodium, and chitosan with urea (commercial urea without biochar [CU]). N fertilization in a winter wheat field was treated with BU and CU at both 265 kg N ha?1 (HL) and 186 kg N ha?1 (LN). Within a treatment plot, a microplot was fertilized with 15N-labeled urea at a relevant N level. We investigated the influence of fertilizer management on biomass, grain yield, bioaccumulation of nutrient, soil properties, 15N isotopic abundance, and greenhouse gas emissions. Microscopic and spectroscopic analysis showed that micro/nanonetwork of biochar could bind N to form a loss control agglomerated particle, and organo-mineral coatings on BU may protect N from quick release. Compared with CU, BU significantly increased grain yield by 13% and 38%, and grain N allocation by 19% and 55%, respectively, at HN and LN level. The total recovery of urea 15N in wheat plant (15N based NUE) was 32.8% under CU regardless of N rates but increased to 41.7% (HN rate) and 56.3% (LN rate) under BU. Whereas, the soil proportion (soil residual 15N) was 20.1% and 13.4% under CU but 32.5% and 18.8% under BU, in 0-20cm topsoil, respectively, at HN and LN rate. Compared with the CU, BU had no effect on CO2 and CH4 emissions but significantly reduced the total N2O emission by 23%–28%. These important findings suggested that BU can be beneficial to uplift plant NUE to reduce reactive N loading but boost crop production.  相似文献   

10.
Switchgrass (Panicum virgatum L.) is usually grown on marginal land for biofuel system, in which nitrogen (N) is an essential management practice, and landscape position is a key topographical factor in impacting the production. However, limited information is available regarding how the N application and landscape positions affect soil microbial communities and enzyme activities under switchgrass. Thus, the specific objective of this study was to evaluate the responses of N rate (high, 112 kg N/ha; medium, 56 kg N/ha; and low, 0 kg N/ha) and landscape positions (shoulder and footslope) on soil biological health under switchgrass field. Data showed that N addition significantly influenced carbon and N fractions. The hot water‐soluble organic carbon (HWC) and nitrogen (HWN) fractions were significantly higher at footslope position than the shoulder position. The amount of total phospholipid fatty acid (PLFA), total bacterial, actinomycetes, gram‐negative and gram‐positive bacteria, total fungi, arbuscular mycorrhizal (AM) fungi, and saprophytes PLFAs were highest with medium and high N rates and footslope position. The N addition increased total PLFAs in N fertilizer treatments, viz. medium (5,946 ng PLFA‐C/g soil) and high N rates (5,871 ng PLFA‐C/g soil). Microbial biomass carbon and nitrogen and enzyme activities (urease, β‐glucosidase, acid phosphatase and arylsulfatase) were significantly enhanced by N fertilization (medium and high N rates) compared to control (low N rates) under footslope position. The urease activity under medium (36.3 µmol N‐NH4+ g?1 soil hr?1) and high N rates (31.4 µmol N‐NH4+ g?1 soil hr?1) was 42.9% and 23.6% higher than low N rates, respectively. This study suggests that the application of medium N rate in footslope position to switchgrass can enhance the soil biological properties and hence can protect the environment from the excessive use of N fertilizer.  相似文献   

11.
为明确稻麦轮作系统有机肥施用对作物产量和土壤性质的影响,本研究搜集已公开发表的文献数据,利用meta分析法定量分析了有机肥类型(普通有机肥、生物质炭、秸秆)、施用策略(单施有机肥、有机肥配施部分化肥、有机肥配施全量化肥)、施用年限(短期、中期、长期)对稻麦产量和土壤性质的影响及其对不同土壤条件(酸性、中性、碱性)的响应。结果表明: 与单施化肥相比,有机肥施用对水稻和小麦的增产效应相近,分别为3.1%和3.0%。有机肥施用对土壤性质的提升效果更明显,显著降低了土壤容重(5.7%),显著提高了土壤有机质、全氮、全磷、碱解氮、速效磷和速效钾含量,以及微生物生物量碳、氮,增幅在11.7%~38.4%。不同类型有机肥中,生物质炭和普通有机肥对土壤性质的改良效果优于秸秆;与单施有机肥相比,有机肥配施化肥的作物增产效果更好,而土壤性质改良效果较差;随着有机肥施用年限增加,作物增产和土壤肥力提升效应逐渐增强;在酸性土壤条件下有机肥施用对作物的增产效果最显著。土壤容重与稻麦周年产量呈显著负相关,而土壤全氮、速效磷、速效钾含量和微生物生物量氮与稻麦周年产量呈显著正相关关系。  相似文献   

12.
Sewage sludge has been used as organic manure to replace chemical fertilizer. The aim of this study was to evaluate the effect of doses of sewage sludge on the soil bacterial community by DNA microarray analysis. A microarray phylochip containing 1,560 partial sequences of 16S rRNA from the most common strains of bacteria was developed for bioprospection. Soil plots from an experimental field in Brazil were assessed with or without sludge treatment containing different doses of nitrogen based on that recommended for maize cultivation. The microarray technique was useful for quickly assessing changes in the bacterial communities and a high variation was observed, mainly in soil treated with high doses of sludge. While sludge containing 25 kg N/ha favored an in crease in the number of members in various phyla, on the other hand sludge with the higher dose regarding to 200 kg N/ha caused a reduction in the number of members in almost all phyla. Proteobacteria often dominant in soils was specifically affected. This study highlights the spread of bacteria to new environments and provides direct information about bacterial composition at specific habitats. Our results have shown that bacterial community structure was greatly affected by sludge application.  相似文献   

13.
Summary Field experiments showed that soil compaction did not affect wheat yield significantly under rainfed conditions. Weed population was significantly reduced due to soil compaction. Compaction decreased total moisture use and increased water use efficiency. There was better and profitable utilization of stored soil moisture from the compaction treatments as compared to no compaction treatment.Placement of nitrogen about 10 to 15 cm deep in the soil directly below the seed resulted in significant increase in the yield of wheat crop grown under rainfed conditions. Weed population was not affected due to nitrogen placement. Total moisture use reduced due to nitrogen placement. Under rainfed conditions, deep placement of nitrogen was important for increasing the efficiency of fertilizer as well as water utilization by wheat crop.  相似文献   

14.

The rapidly growing world population, water shortage, and food security are promising problems for sustainable agriculture. Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution. This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status. A series of field experiments were conducted for six years with treatments as: farmer accustomed to fertilization used as control (CON), fertilizer decrement (KF), fertilizer decrement + water-saving irrigation (BMP1); combined application of organic and inorganic fertilizer + water-saving irrigation (BMP2), and combined application of controlled-release fertilizer (BMP3). A significant improvement was observed in soil organic matter (14.9%), nitrate nitrogen (106.7%), total phosphorus (23.9%), available phosphorus (26.2%), straw yield (44.8%), and grain yield (54.7%) with BMP2 treatment as compared to CON. The study concludes that integrating chemical and organic fertilizers with water-saving irrigation (BMP2) is a good approach to increasing corn productivity, ensuring water safety and improving soil health. The limitations of the current study include the identification of fertilizer type and its optimum dose, irrigation water type, and geographical position.

  相似文献   

15.
Stripe rust of winter bread wheat (Triticum aestivum L.) causes substantial grain yield loss in Central Asia. This study involved two replicated field experiments undertaken in 2009–2010 and 2010–2011 winter wheat crop seasons. The first experiment was conducted to determine grain yield reductions on susceptible winter wheat cultivars using single and two sprays of fungicide at Zadoks growth stages Z61–Z69 in two farmers’ fields in Tajikistan and one farmer's field in Uzbekistan. In the second experiment, four different fungicides at two concentrations were evaluated at Zadoks growth stage Z69. These included three products from BASF – Opus (0.5 l/ha and 1.0 l/ha), Platoon (0.5 l/ha and 1.0 l/ha) and Opera (0.75 l/ha and 1.5 l/ha) – and locally used fungicide Titul 390 (0.5 l/ha and 1.0 l/ha). One and two sprays of fungicides did not differ significantly (P > 0.05) in increasing grain yield. Stripe rust reduced grain yield and 1000‐kernel weight (TKW) from 24 to 39% and from 16 to 24%, respectively. The benefits from the two concentrations of the same fungicide did not consistently resulted in significantly higher grain yield, suggesting that the lower concentrations could be more cost effective. Our study provides important information about the selection of fungicides, spray concentrations and number of spray to control stripe rust and increase grain yield. The findings could play an important role in developing stripe rust management approaches such as fungicide rotation and strategic fungicide applications in Central Asian countries.  相似文献   

16.
Effah  Zechariah  Li  Lingling  Xie  Junhong  Liu  Chang  Xu  Aixia  Karikari  Benjamin  Anwar  Sumera  Zeng  Min 《Journal of Plant Growth Regulation》2023,42(2):1120-1133

It is critical for spring wheat (Triticum aestivum L.) production in the semi-arid Loess Plateau to understand the impact of nitrogen (N) fertilizer on changes in N metabolism, photosynthetic parameters, and their relationship with grain yield and quality. The photosynthetic capacity of flag leaves, dry matter accumulation, and N metabolite enzyme activities from anthesis to maturity were studied on a long-term fertilization trial under different N rates [0 kg ha?1(N1), 52.5 kg ha?1 (N2), 105 kg ha?1 (N3), 157.5 kg ha?1 (N4), and 210 kg ha?1 (N5)]. It was observed that N3 produced optimum total dry matter (5407 kg ha?1), 1000 grain weight (39.7 g), grain yield (2.64 t ha?1), and protein content (13.97%). Our results showed that N fertilization significantly increased photosynthetic parameters and N metabolite enzymes at all growth stages. Nitrogen harvest index, partial productivity factor, agronomic recovery efficiency, and nitrogen agronomic efficiency were decreased with increased N. Higher N rates (N3–N5) maintained higher photosynthetic capacity and dry matter accumulation and lower intercellular CO2 content. The N supply influenced NUE by improving photosynthetic properties. The N3 produced highest chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate, grain yield, grain protein, dry matter, grains weight, and N metabolite enzyme activities compared to the other rates (N1, N2, N4, and N5). Therefore, increasing N rates beyond the optimum quantity only promotes vegetative development and results in lower yields.

  相似文献   

17.
The novel cultivation of paddy rice in aerobic soil reveals the great potential not only for water-saving agriculture, but also for rice intercropping with legumes and both are important for the development of sustainable agriculture. A two-year field experiment was carried out to investigate the yield advantage of intercropping peanut (Arachis hypogaea L., Zhenyuanza 9102) and rice (Oryza sativa L., Wuyujing 99-15) in aerobic soil, and its effect on soil nitrogen (N) fertility. A pot experiment was also conducted to examine the N2-fixation by peanut and N transfer from peanut to rice at three N fertilizer application rates, i.e., 15, 75 and 150 kg N ha–1 using a 15N isotope dilution method. The results showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.36 in 2002. Both area-adjusted yield and N content of rice were significantly increased in the intercropping system while those of peanut were not significantly different between intercropping and monocropping systems. The yields of rice grain and peanut, for example, were increased by 29–37% and 4–7% in the intercropping system when compared to the crop grown in the monocropping system. The intercropping advantage was mainly due to the sparing effect of soil inorganic N contributed by the peanut. This result was proved by the higher soil mineral N concentration under peanut monocropping and intercropping than under the rice monocropping system.%Ndfa (nitrogen derived from atmosphere) by peanut was 72.8, 56.5 and 35.4% under monocropping and 76.1, 53.3 and 50.7% under the intercropping system at N fertilizer application rates of 15, 75 and 150 kg ha–1, respectively. The 15N-based estimates of N transfer from peanut (%NTFL) was 12.2, 9.2 and 6.2% at the three N fertilizer application rates. N transferred from peanut accounted for 11.9, 6.4 and 5.5% of the total N accumulated in the rice plants in intercropping at the same three N fertilizer application rates, suggesting that the transferred N from peanut in the intercropping system made a contribution to the N nutrition of rice, especially in low-N soil.  相似文献   

18.
于2016—2018年小麦生长季,在山东省兖州市史家王子村进行田间试验,供试品种为‘济麦22’,在150(N1)、180(N2)和210(N3) kg·hm-2 3个施氮量下,拔节期设置畦灌和撒施追氮(W1)及微喷带灌溉和追氮水肥一体化(W2)两种灌溉施氮方式,研究了测墒补灌条件下灌溉施氮方式对小麦水分利用、光合特性及干物质积累与转运的影响.结果表明: 同一施氮量条件下,W2两年度灌浆期7日平均棵间蒸发量均显著低于W1处理,60~160 cm 土层土壤水分消耗量显著高于W1处理;W2两年度开花后14、21和28 d的旗叶净光合速率、气孔导度和蒸腾速率均显著高于W1处理;W2开花期和成熟期干物质积累量及小麦开花后干物质积累在籽粒中的分配显著高于W1处理;W2两年度总耗水量与W1处理均无显著差异,籽粒产量、水分利用效率和氮肥利用效率显著高于W1处理,施氮量为210 kg·hm-2的籽粒产量、水分利用效率和氮肥利用效率最高.综合考虑,同一施氮量水平下,微喷带灌溉和追氮水肥一体化处理优于畦灌和撒施追氮处理,总施氮量210 kg·hm-2、拔节期采用微喷带灌溉和追氮水肥一体化的N3W2处理是本试验条件下节水节肥的最优处理.  相似文献   

19.
Summary The importance of initial exchangeable soil NH 4 + in nitrogen nutrition and grain yield of rice was studied in a number of representative lowland rice soils in the Philippines. The initial exchangeable soil NH 4 + +fertilizer N plotted against nitrogen uptake by the crop resulted in a highly significant linear relationship (R2=0.91), suggesting that the presence of exchangeable NH 4 + in the soil at transplanting behaved like fertilizer nitrogen. The correlation between N fertilizer rate and N uptake by the rice crop was relatively poor (R2=0.73). On the other hand, relative grain yield was more closely correlated with the initial exchangeable soil NH 4 + +fertilizer N than with fertilizer nitrogen applied alone. These results indicate that the initial exchangeable NH 4 + in the soil contributed substantially to the nitrogen uptake of the crop.Critical nitrogen levels in the soil defined as the initial exchangeable soil NH 4 + +fertilizer N at which the optimum grain yield (95% of the maximum yield) is obtained, varied from 60 to 100 kg N/ha in the wet season and from 100 to 120 kg N/ha in the dry season for the different fertilizer treatments. The results further suggest that the initial exchangeable soil NH 4 + should serve as a guide in selecting an optimum nitrogen fertilizer rate for high grain yields.  相似文献   

20.
Soil function may be affected by cropping practices impacting the soil microbial community. The effect of different phosphorus (P) fertilization rates (0, 20, or 40 kg P2O5 ha−1) on soil microbial diversity was studied in 8-year-old alfalfa monocultures. The hypothesis that P fertilization modifies soil microbial community was tested using denaturing gradient gel electrophoresis and phospholipids fatty acid (PLFA) profiling to describe soil bacteria, fungi, and arbuscular mycorrhizal (AM) fungi diversity. Soil parameters related to fertility (soil phosphate flux, soluble P, moisture, phosphatase and dehydrogenase assays, and carbon and nitrogen content of the light fraction of soil organic matter) were also monitored and related to soil microbial ribotype profiles. Change in soil P fertility with the application of fertilizer had no effect on crop yield in 8 years, but on the year of this study was associated with shifts in the composition of fungal and bacterial communities without affecting their richness, as evidenced by the absence of effect on the average number of ribotypes detected. However, variation in soil P level created by a history of differential fertilization did not significantly influence AM fungi ribotype assemblages nor AM fungi biomass measured with the PLFA 16:1ω5. Fertilization increased P flux and soil soluble P level but reduced soil moisture and soil microbial activity, as revealed by dehydrogenase assay. Results suggest that soil P fertility management could influence soil processes involving soil microorganisms. Seasonal variations were also recorded in microbial activity, soil soluble P level as well as in the abundance of specific bacterial and fungal PLFA indicators of soil microbial biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号