首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous genetic and epigenetic alterations cause functional changes in cell biology underlying cancer. These hallmark functional changes constitute potentially tissue‐independent anticancer therapeutic targets. We hypothesized that RNA‐Seq identifies gene expression changes that underly those hallmarks, and thereby defines relevant therapeutic targets. To test this hypothesis, we analysed the publicly available TCGA‐TARGET‐GTEx gene expression data set from the University of California Santa CruzToil recompute project using WGCNA to delineate co‐correlated ‘modules’ from tumour gene expression profiles and functional enrichment of these modules to hierarchically cluster tumours. This stratified tumours according to T cell activation, NK‐cell activation, complement cascade, ATM, Rb, angiogenic, MAPK, ECM receptor and histone modification signalling. These correspond to the cancer hallmarks of avoiding immune destruction, tumour‐promoting inflammation, evading growth suppressors, inducing angiogenesis, sustained proliferative signalling, activating invasion and metastasis, and genome instability and mutation. This approach did not detect pathways corresponding to the cancer enabling replicative immortality, resisting cell death or deregulating cellular energetics hallmarks. We conclude that RNA‐Seq stratifies tumours along some, but not all, hallmarks of cancer and, therefore, could be used in conjunction with other analyses collectively to inform precision therapy.  相似文献   

2.
3.
Ahmed N  Oliva K  Wang Y  Quinn M  Rice G 《Proteomics》2003,3(3):288-298
Expression of urokinase plasminogen activator (uPA) and its receptor (uPAR) strongly correlates with a malignant tumour cell phenotype. In the multistep process of metastasis, uPA binding to uPAR influences different cellular functions. In the present study, a highly metastatic colon cancer cell line, HCT116 was transfected with an expression vector containing a 5' uPAR cDNA fragment in an antisense orientation. This construct was most effective in reducing uPAR cell surface expression as confirmed by flow cytometry analysis. Antisense transfection of HCT116 cells had no effect on proliferation but the following effects were observed: (1) a 1.3-fold decreased adhesion; (2) a two-fold decreased Erk MAP kinase activity; (3) a 2.7-fold decrease in Src kinase activity; (4) a 1.5- and two-fold decrease in uPA cell surface expression and secretion; (5) abrogation of promatrix metalloproteinase-9 secretion; and (6) a complete suppression of plasminogen-dependent matrix degradation. Using proteomic analysis, we demonstrate loss of approximately 200 proteins and quantitative differences in the expression of 141 other proteins in an antisense-clone compared to wild-type and mock-transfected control. Such changes in protein expression with the down-regulation of uPAR may be an important contributor in colon cancer progression and metastasis and may not only provide a basis to develop a proteomic data bank of uPAR-mediated signaling molecules but may also lead to the development of therapeutic approaches for the cure and better management of colon cancer.  相似文献   

4.
The system of hepatocyte growth factor (HGF) and its receptor c‐Met plays a critical role in tumor invasive growth and metastasis. The mortality rate of colorectal cancer (CRC), one of the most commonly diagnosed malignancies, is increased by it gradual development into metastasis, most frequently in the liver. Overexpression of c‐Met, the protein tyrosine kinase receptor for the HCF/scatter factor, has been implicated in the progression and metastasis of human colorectal carcinoma. In this study, we aimed to investigate the role of c‐Met in CRC liver metastasis and illustrate the clinical impact of regulating HGF/c‐Met signaling in patients with CRC liver metastasis. We found that (I) higher levels of c‐Met expression (mRNA and Protein) in CRC liver metastasis than primary CRC by assessing the patient tissue samples; (II) a positive correlation of c‐Met expression with tumor stages of CRC liver metastasis, as well as c‐Met expression in CRC, live metastasis concurred with regional lymph node metastasis; (III) the clinical impact of downregulation of HGF/c‐Met signaling on the reduction of proliferation and invasion in CRC liver metastasis. Therefore, we demonstrate that the regulation of HGF/c‐Met pathways may be a promising strategy in the treatment of patients with CRC liver metastasis.  相似文献   

5.
Progression to metastasis is the critical point in colorectal cancer (CRC) survival. However, the proteome associated to CRC metastasis is very poorly understood at the moment. In this study, we used stable isotope labeling by amino acids in cell culture to compare two CRC cell lines: KM12C and KM12SM, representing poorly versus highly metastatic potential, to find and quantify the differences in protein expression, mostly at the cell surface level. After biotinylation followed by affinity purification, membrane proteins were separated by SDS‐PAGE and analyzed using nanoflow LC‐ESI‐LTQ. A total of 291 membrane and membrane‐associated proteins were identified with a p value<0.01, from which 60 proteins were found to be differentially expressed by more than 1.5‐fold. We identified a number of cell signaling, CDs, integrins and other cell adhesion molecules (cadherin 17, junction plakoglobin (JUP)) among the most deregulated proteins. They were validated by Western blot, confocal microscopy and flow cytometry analysis. Immunohistochemical analysis of paired tumoral samples confirmed that these differentially expressed proteins were also altered in human tumoral tissues. A good correlation with a major abundance in late tumor stages was observed for JUP and 17‐β‐hydroxysteroid dehydrogenase type 8 (HSD17B8). Moreover, the combined increase in JUP, occludin and F11 receptor expression together with cadherin 17 expression could suggest a reversion to a more epithelial phenotype in highly metastatic cells. Relevant changes were observed also at the metabolic level in the pentose phosphate pathway and several amino acid transporters. In summary, the identified proteins provide us with a better understanding of the events involved in liver colonization and CRC metastasis.  相似文献   

6.
The aberrant expression of human sirtuin 2 (SIRT2) has been detected in various types of cancer; however, the biological roles, underlying mechanisms and clinical significance of SIRT2 dysregulation in human colorectal cancer (CRC) remain unclear. The results of this study demonstrate that compared with paired normal tissues, SIRT2 expression is significantly decreased in CRC tissues. SIRT2 loss has been correlated with clinicopathological characteristics, including distant metastasis, lymph node metastasis and American Joint Committee on Cancer (AJCC) stage; this loss serves as an independent factor that indicates a poor prognosis for patients with CRC. Further gain‐ and loss‐of‐function analyses have demonstrated that SIRT2 suppresses CRC cell proliferation and metastasis both in vivo and in vitro. Mechanistically, miR‐212‐5p was identified to directly target the SIRT2 3′‐untranslated region (3′‐UTR), leading to SIRT2 down‐regulation. The ectopic expression of SIRT2 reverses the effect of miR‐212‐5p overexpression on CRC cell colony formation, invasion, migration and proliferation. Clinically, an inverse correlation was found between miR‐212‐5p and SIRT2 expression. High miR‐212‐5p expression has been found to result in a poor prognosis and aggressive clinicopathological characteristics in patients with CRC. Taken together, these results suggest that SIRT2, targeted by miR‐212‐5p, acts as a tumour suppressor in CRC and that the miR‐212‐5p/SIRT2 axis is a promising prognostic factor and potential therapeutic target in CRC.  相似文献   

7.
Urokinase plasminogen activator (uPA) and its high affinity receptor (uPAR) play crucial proteolytic and non-proteolytic roles in cancer metastasis. In addition to promoting plasmin-mediated degradation of extracellular matrix barriers, cell surface engagement of uPA through uPAR binding results in the activation of a suite of diverse cellular signal transduction pathways. Because uPAR is bound to the plasma membrane through a glycosyl-phosphatidylinositol anchor, these signalling sequelae are thought to occur through the formation of multi-protein cell surface complexes involving uPAR. To further characterize uPAR-driven protein complexes, we co-immunoprecipitated uPAR from the human ovarian cancer cell line, OVCA 429, and employed sensitive proteomic methods to identify the uPAR-associated proteins. Using this strategy, we identified several known, as well as numerous novel, uPAR associating proteins, including the epithelial restricted integrin, alphavbeta6. Reverse immunoprecipitation using anti-beta6 integrin subunit monoclonal antibodies confirmed the co-purification of this protein with uPAR. Inhibition of uPAR and/or beta6 integrin subunit using neutralizing antibodies resulted in the inhibition of uPA-mediated ERK 1/2 phosphorylation and subsequent cell proliferation. These data suggest that the association of beta6 integrin (and possibly other lynchpin cancer regulatory proteins) with uPAR may be crucial in co-transmitting uPA signals that induce cell proliferation. Our findings support the notion that uPAR behaves as a lynchpin in promoting tumorigenesis by forming functionally active multiprotein complexes.  相似文献   

8.
9.
Lymph node metastasis (LNM) is associated with poor prognosis in colorectal cancer (CRC). The presence or absence of lymph node metastases is a strong independent prognostic factor for CRC survival. Investigation of proteins associated with the process of lymph node metastasis (LNM) is crucial for understanding of the molecular mechanisms underlying the LNM process and for predicting the CRC prognosis. In the present study, proteins from CRC tissues and adjacent normal mucosa (NMC) were examined using two‐dimensional gel electrophoresis coupled with MALDI‐TOF‐MS. The expression levels of Ferritin Heavy Chain (FHC) were decreased in LNM CRC as compared to those in non‐LNM CRC, while the expression of Cathepsin D and Ubiquitin C‐terminal hydrolase‐L1 (UCH‐L1) were increased in LNM CRC. The results were confirmed by Western blotting and immunohistochemical staining. Furthermore, in vitro cell invasion assay showed that the overexpression of UCH‐L1 through gene transfection increased the invasive ability of HCT8 cells, suggesting that UCH‐L1 is not only a biomarker for LNM in CRC, but also a functional protein that may play a significant role in cell migration. The proteins identified in the present study should further our understanding of the LNM process of CRC and may become useful markers for diagnosis and targets for therapeutic interventions. J. Cell. Biochem. 110: 1512–1519, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Fibulin-5, a multifunctional extracellular matrix (ECM) protein, is secreted into the ECM, regulating metastasis and invasion in many malignant tumors. However, its role in colorectal cancer (CRC) has not been reported. In this study, we detected the expression of fibulin-5 in 56 CRC patients and eight CRC cell lines, revealing that fibulin-5 was expressed lower in CRC tumor tissues than in peritumor tissues. Furthermore, our study verified that fibulin-5 promoted cell apoptosis and reactive oxygen species (ROS) production by inhibiting transient receptor potential cation channel subfamily V member 1 (TRPV1) in CRC cells. Moreover, NAC (the scavenger of ROS), SB203580 (the inhibitor of p38), PD98059 (the inhibitor of ERK), and SC79 (the activator of Akt) were used to uncover that fibulin-5 induced apoptosis through the ROS/mitogen-activated protein kinase and Akt signal pathways by downregulating TRPV1. Together, these results suggest that fibulin-5 might serve as a novel drug target for the treatment of CRC patients.  相似文献   

11.
The increase in proliferation and the lack of differentiation of cancer cells resemble what occur in the embryonic stem cells during physiological process of embryogenesis. There are also striking similarities in the behaviour between the invasive placental cells and invasive cancer cells. In the present study, microarrays were used to analyse the global expression of microRNAs in a human embryonic stem cell line (i.e. HUES‐17) and four colorectal cancer (CRC) cell lines (i.e. LoVo, SW480, HT29 and Caco‐2) with different metastatic potentialities. Only the expression of miR‐26b was significant decreased in HUES‐17s and LoVo cells, compared with other three cell lines (P < 0.01). The quantitative real‐time PCR analysis confirmed the results of the microarray analysis. Overexpression of miR‐26b expression by miR‐26 mimics transfection and led to the significant suppression of the cell growth and the induction of apoptosis in LoVo cells in vitro, and the inhibition of tumour growth in vivo. Moreover, the potential targets of miR‐26b was predicted by using bioinformatics, and then the predicted target genes were further validated by comparing gene expression profiles between LoVo and NCM460 cell lines. Four genes (TAF12, PTP4A1, CHFR and ALS2CR2) with intersection were found to be the targets of miR‐26b. MetaCore network analysis further showed that the regulatory pathways of miR‐26b were significantly associated with the invasiveness and metastasis of CRC cells. These data suggest that miR‐26b might serve as a novel prognostic factor and a potential therapeutic target for CRC.  相似文献   

12.
Cell migration and invasion are key processes in the metastasis of cancer, and suppression of these steps is a promising strategy for cancer therapeutics. The aim of this study was to explore small molecules for treating colorectal cancer (CRC) and to investigate their anti‐metastatic mechanisms. In this study, six CRC cell lines were used. We showed that YH‐306 significantly inhibited the migration and invasion of CRC cells in a dose‐dependent manner. In addition, YH‐306 inhibited cell adhesion and protrusion formation of HCT116 and HT‐29 CRC cells. Moreover, YH‐306 potently suppressed uninhibited proliferation in all six CRC cell lines tested and induced cell apoptosis in four cell lines. Furthermore, YH‐306 inhibited CRC colonization in vitro and suppressed CRC growth in a xenograft mouse model, as well as hepatic/pulmonary metastasis in vivo. YH‐306 suppressed the activation of focal adhesion kinase (FAK), c‐Src, paxillin, and phosphatidylinositol 3‐kinases (PI3K), Rac1 and the expression of matrix metalloproteases (MMP) 2 and MMP9. Meanwhile, YH‐306 also inhibited actin‐related protein (Arp2/3) complex‐mediated actin polymerization. Taken together, YH‐306 is a candidate drug in preventing growth and metastasis of CRC by modulating FAK signalling pathway.  相似文献   

13.
3,3′‐Diindolylmethane (DIM) is a known anti‐tumor agent against breast and other cancers; however, its exact mechanism of action remains unclear. The urokinase plasminogen activator (uPA) and its receptor (uPAR) system are involved in the degradation of basement membrane and extracellular matrix, leading to tumor cell invasion and metastasis. Since uPA‐uPAR system is highly activated in aggressive breast cancer, we hypothesized that the biological activity of B‐DIM could be mediated via inactivation of uPA‐uPAR system. We found that B‐DIM treatment as well as silencing of uPA‐uPAR led to the inhibition of cell growth and motility of MDA‐MB‐231 cells, which was in part due to inhibition of VEGF and MMP‐9. Moreover, silencing of uPA‐uPAR led to decreased sensitivity of these cells to B‐DIM indicating an important role of uPA‐uPAR in B‐DIM‐mediated inhibition of cell growth and migration. We also found similar effects of B‐DIM on MCF‐7, cells expressing low levels of uPA‐uPAR, which was due to direct down‐regulation of MMP‐9 and VEGF, independent of uPA‐uPAR system. Interestingly, over‐expression of uPA‐uPAR in MCF‐7 cells attenuated the inhibitory effects of B‐DIM. Our results, therefore, suggest that B‐DIM down‐regulates uPA‐uPAR in aggressive breast cancers but in the absence of uPA‐uPAR, B‐DIM can directly inhibit VEGF and MMP‐9 leading to the inhibition of cell growth and migration of breast cancer cells. J. Cell. Biochem. 108: 916–925, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
In this study, microarray data analysis, real‐time quantitative PCR and immunohistochemistry were used to detect the expression levels of SSRP1 in colorectal cancer (CRC) tissue and in corresponding normal tissue. The association between structure‐specific recognition protein 1 (SSRP1) expression and patient prognosis was examined by Kaplan‐Meier analysis. SSRP1 was knocked down and overexpressed in CRC cell lines, and its effects on proliferation, cell cycling, migration, invasion, cellular energy metabolism, apoptosis, chemotherapeutic drug sensitivity and cell phenotype‐related molecules were assessed. The growth of xenograft tumours in nude mice was also assessed. MiRNAs that potentially targeted SSRP1 were determined by bioinformatic analysis, Western blotting and luciferase reporter assays. We showed that SSRP1 mRNA levels were significantly increased in CRC tissue. We also confirmed that this upregulation was related to the terminal tumour stage in CRC patients, and high expression levels of SSRP1 predicted shorter disease‐free survival and faster relapse. We also found that SSRP1 modulated proliferation, metastasis, cellular energy metabolism and the epithelial‐mesenchymal transition in CRC. Furthermore, SSRP1 induced apoptosis and SSRP1 knockdown augmented the sensitivity of CRC cells to 5‐fluorouracil and cisplatin. Moreover, we explored the molecular mechanisms accounting for the dysregulation of SSRP1 in CRC and identified microRNA‐28‐5p (miR‐28‐5p) as a direct upstream regulator of SSRP1. We concluded that SSRP1 promotes CRC progression and is negatively regulated by miR‐28‐5p.  相似文献   

15.
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Recently, the role of cancer stem cells (CSCs) has been highlighted as a crucial emerging factor in chemoresistance, cancer relapse, and metastasis. CD133 is a surface marker of CSCs and has been argued to have prognostic and therapeutic values in CRC along with its related pathways such as Wnt, Notch, and hedgehog. Several studies have successfully applied targeted therapies against CD133 in CRC models namely bispecific antibodies (BiAbs) and anti‐Wnt and notch pathways agents. These studies have yielded initial promising results in this regard. However, none of the therapeutics have been used in the clinical setting and their efficacy and adverse effects profile are yet to be elucidated. This review aims to gather the old and most recent data on the prognostic and therapeutic values of CD133 and CD133‐targeted therapies in CRC.  相似文献   

16.
Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. In this study, we show that breast cancer cells cultured in 1.0% O(2) demonstrate changes consistent with epithelial-mesenchymal transition (EMT). Snail translocates to the nucleus, and E-cadherin is lost from plasma membranes. Vimentin expression, cell migration, Matrigel invasion, and collagen remodeling are increased. Hypoxia-induced EMT is accompanied by increased expression of the urokinase-type plasminogen activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR, including Akt and Rac1. Glycogen synthase kinase-3beta is phosphorylated, and Snail expression is increased. Hypoxia-induced EMT is blocked by uPAR gene silencing and mimicked by uPAR overexpression in normoxia. Antagonizing Rac1 or phosphatidylinositol 3-kinase also inhibits development of cellular properties associated with EMT in hypoxia. Breast cancer cells implanted on chick chorioallantoic membranes and treated with CoCl(2), to model hypoxia, demonstrate increased dissemination. We conclude that in hypoxia, uPAR activates diverse cell signaling pathways that cooperatively induce EMT and may promote cancer metastasis.  相似文献   

17.
18.
Protein‐linked glycans play key roles in cell differentiation, cell–cell interactions, cell growth, adhesion and immune response. Aberrant glycosylation is a characteristic feature of tumor cells and is involved in tumor growth, escape from apoptosis, metastasis formation, and resistance to therapy. It can serve as cancer biomarker and treatment target. To enable comprehensive screening for the impact of tumor driving mutations in colorectal cancer cells we present a method for specific analysis of tumor driver‐induced glycome changes. The strategy is based on a combination of three technologies, that is recombinase‐mediated cassette exchange (RMCE), Click‐It chemistry and mass spectrometry. The new method is exemplified by the analysis of the impact of inactivating mutations of the TGF‐ß‐receptor type II (TGFBR2) on sialic acid incorporation into protein‐linked glycans of the colon cancer cell line HCT116. Overall, 70 proteins were found to show de novo sialic acid incorporation exclusively upon TGFBR2 expression whereas 7 proteins lost sialylation upon TGFBR2 reconstitution. Validation of detected candidate glycoproteins is demonstrated with the cell surface glycoprotein nectin‐3 known to be involved in metastasis, invasion and prognosis of various cancers. Altogether, our new approach can help to systematically puzzle out the influence of tumor‐specific mutations in a major signaling pathway, as exemplified by the TGFBR2 tumor suppressor, on the tumor glycome. It facilitates the identification of glycan‐based tumor markers that could be used for diagnostic and therapeutic applications. In principle the outlined strategy can be adapted to any cancer cell line, tumor driver mutation and several glycan‐building blocks.  相似文献   

19.

Background  

In human pancreatic cancer progression, the α6β1-integrin is expressed on cancer cell surface during invasion and metastasis formation. In this study, we investigated whether interleukin (IL)-1α induces the alterations of integrin subunits and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) expression in pancreatic cancer cells. We hypothesize that the alterations of integrin subunits and uPA/uPAR expression make an important role in signaling pathways responsible for biological behavior of pancreatic cancer cells.  相似文献   

20.
Follistatin-like (FSTL) family members are associated with cancer progression. However, differences between FSTL members with identical cancer types have not been systematically investigated. Among the most malignant tumours worldwide, colorectal cancer (CRC) has high metastatic potential and chemoresistance, which makes it challenging to treat. A systematic examination of the relationship between the expression of FSTL family members in CRC will provide valuable information for prognosis and therapeutic development. Based on large cohort survival analyses, we determined that FSTL3 was associated with a significantly worse prognosis in CRC at the RNA and protein levels. Immunohistochemistry staining of CRC specimens revealed that FSTL3 expression levels in the cytosol were significantly associated with a poor prognosis in terms of overall and disease-free survival. Molecular simulation analysis showed that FSTL3 participated in multiple cell motility signalling pathways via the TGF-β1/TWIST1 axis to control CRC metastasis. The findings provide evidence of the significance of FSTL3 in the oncogenesis and metastasis of CRC. FSTL3 may be useful as a diagnostic or prognostic biomarker, and as a potential therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号