首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  Systematic relationships among higher taxa within Chrysopidae, a large and agriculturally significant neuropteran family, are poorly understood. A molecular phylogenetic survey of Chrysopidae was performed with three nuclear genes, namely wingless (546 bp), phosphoenolpyruvate carboxykinase (483 bp), and sodium/potassium ATPase alpha subunit (410 bp). We examined 83 species in 24 genera, mainly from Japan, Eurasia and Africa. Parsimony and Bayesian analyses of combined datasets of a total of 1439 bp demonstrated that (1) monophyly of the subfamily Chrysopinae was supported but the relationship between Nothochrysinae and Apochrysinae was unclear, although the two subfamilies together may constitute the sister taxon of Chrysopinae; (2) of the three tribes examined within Chrysopinae (Ankylopterygini, Belonopterygini and Chrysopini), monophyly of Ankylopterygini and Belonopterygini was supported, but the relationships among the three remain unclear; (3) seven sub-clades in Chrysopini were indicated, namely (i) Brinckochrysa , (ii) Chrysemosa  +  Suarius , (iii) Chrysotropia  +  Nineta , (iv) Mallada  +  Chrysoperla  +  Peyerimhoffina , (v) Cunctochrysa  +  Meleoma  +  Nipponochrysa  +  Apertochrysa albolineatoides , (vi) Chrysopa  +  Plesiochrysa , and (vii) Dichochrysa  +  Apertochrysa eurydera ; and (4) most genera were monophyletic, except for Apertochrysa and Cunctochrysa , each of which was shown to have two distinct origins. Our molecular analysis allowed the assignment of several species of uncertain affinities to known genera. There was some disagreement between the molecular and previously published morphological phylogenies, but in general our results confirmed existing morphological hypotheses of evolution within the family.  相似文献   

2.
The Asteraceae are commonly divided into two large subfamilies, the Cichorioideae (syn. Lactucoideae; Mutisieae, Cardueae, Lactuceae, Vernonieae, Liabeae, Arctoteae) and the Asteroideae (Inuleae, Astereae, Anthemideae, Senecioneae, Calenduleae, Heliantheae, Eupatorieae). Recent phylogenetic analyses based on morphological and chloroplast DNA data conclusively show that the Mutisieae-Barnadesiinae are the sister group to the rest of the family and that the Asteroideae tribes form a monophyletic group. The Vernonieae and Liabeae are sister tribes and the Eupatorieae are nested within a paraphyletic Heliantheae; otherwise tribal interrelationships are still largely uncertain. The Mutisieae-Barnadesiinae are excluded from the Mutisieae and elevated to the new subfamily Barnadesioideae. The two subfamilies Barnadesioideae and Asteroideae are monophyletic, whereas the status of the Cichorioideae remains uncertain. Analyses of chloroplast DNA data support the monophyly of the Cichorioideae; however, morphological data indicate that the subfamily is paraphyletic. Further studies are needed to test the monophyly of the Cichorioideae, as well as to further resolve tribal interrelationships in the two larger subfamilies.  相似文献   

3.
Abstract Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit II (COII) mtDNA sequences (684 bp). Twenty‐seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%–11.1% between genera within subfamilies, and 8.8%–12.3% between subfamilies. Amino acid sequence diverged 0–6.1% between genera within subfamilies, and 0.4%–7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.  相似文献   

4.
Evidence from DNA sequences on the phylogenetic systematics of primates is congruent with the evidence from morphology in grouping Cercopithecoidea (Old World monkeys) and Hominoidea (apes and humans) into Catarrhini, Catarrhini and Platyrrhini (ceboids or New World monkeys) into Anthropoidea, Lemuriformes and Lorisiformes into Strepsirhini, and Anthropoidea, Tarsioidea, and Strepsirhini into Primates. With regard to the problematic relationships of Tarsioidea, DNA sequences group it with Anthropoidea into Haplorhini. In addition, the DNA evidence favors retaining Cheirogaleidae within Lemuriformes in contrast to some morphological studies that favor placing Cheirogaleids in Lorisiformes. While parsimony analysis of the present DNA sequence data provides only modest support for Haplorhini as a monophyletic taxon, it provides very strong support for Hominoidea, Catarrhini, Anthropoidea, and Strepsirhini as monophyletic taxa. The parsimony DNA evidence also rejects the hypothesis that megabats are the sister group of either Primates or Dermoptera (flying lemur) or a Primate-Dermoptera clade and instead strongly supports the monophyly of Chiroptera, with megabats grouping with microbats at considerable distance from Primates. In contrast to the confused morphological picture of sister group relationships within Hominoidea, orthologous noncoding DNA sequences (spanning alignments involving as many as 20,000 base positions) now provide by the parsimony criterion highly significant evidence for the sister group relationships defined by a cladistic classification that groups the lineages to all extant hominoids into family Hominidae, divides this ape family into subfamilies Hylobatinae (gibbons) and Homininae, divides Homininae into tribes Pongini (orangutans) and Hominini, and divides Hominini into subtribes Gorillina (gorillas) and Hominina (humans and chimpanzees). A likelihood analysis of the largest body of these noncoding orthologues and counts of putative synapomorphies using the full range of sequence data from mitochondrial and nuclear genomes also find that humans and chimpanzees share the longest common ancestry. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Insect diversity represents about 60% of the estimated million‐and‐a‐half described eukaryotic species worldwide, yet comprehensive and well‐resolved intra‐ordinal phylogenies are still lacking for the majority of insect groups. This is the case especially for the most species‐rich insect group, the beetles (Coleoptera), a group for which less than 4% of the known species have had their DNA sequenced. In this study, we reconstruct the first higher level phylogeny based on DNA sequence data for the species‐rich darkling beetles, a family comprising at least 20 000 species. Although amongst all families of beetles Tenebrionidae ranks seventh in terms of species diversity, the lack of knowledge on the phylogeny and systematics of the group is such that its monophyly has been questioned (not to mention those of the subfamilies and tribes contained within it). We investigate the evolutionary history of Tenebrionidae using multiple phylogenetic inference methods (Bayesian inference, maximum likelihood and parsimony) to analyse a dataset consisting of eight gene fragments across 404 taxa (including 250 tenebrionid species). Although the resulting phylogenetic framework only encompasses a fraction of the known tenebrionid diversity, it provides important information on their systematics and evolution. Whatever the methods used, our results provide strong support for the monophyly of the family, and highlight the likely paraphyletic or polyphyletic nature of several important tenebrionid subfamilies and tribes, notably the polyphyletic subfamilies Diaperinae and Tenebrioninae that clearly require substantial revision in the future. Some interesting associations in several groups are also revealed by the phylogenetic analyses, such as the pairing of Aphtora Bates with Phrenapatinae. Furthermore this study advances our knowledge of the evolution of the group, providing novel insights into much‐debated theories, such as the apparent relict distribution of the tribe Elenophorini.  相似文献   

6.
Siphonaptera (fleas) is a highly specialized order of holometabolous insects comprising ~2500 species placed in 16 families. Despite a long history of extensive work on flea classification and biology, phylogenetic relationships among fleas are virtually unknown. We present the first formal analysis of flea relationships based on a molecular matrix of four loci (18S ribosomal DNA, 28S ribosomal DNA, Cytochrome Oxidase II, and Elongation Factor 1‐alpha) for 128 flea taxa from around the world representing 16 families, 25 subfamilies, 26 tribes, and 83 flea genera with eight outgroups. Trees were reconstructed using direct optimization and maximum likelihood techniques. Our analysis supports Tungidae as the most basal flea lineage, sister group to the remainder of the extant fleas. Pygiopsyllomorpha is monophyletic, as are the constituent families Lycopsyllidae, Pygiopsyllidae, and Stivaliidae, with a sister group relationship between the latter two families. Macropsyllidae is resolved as sister group to Coptopsyllidae with moderate nodal support. Stephanociricidae is monophyletic, as are the two constituent subfamilies Stephanocircinae and Craneopsyllinae. Vermipsyllidae is placed as sister group to Jordanopsylla. Rhopalopsyllidae is monophyletic as are the two constituent subfamilies Rhopalopsyllinae and Parapsyllinae. Hystrichopsyllidae is paraphyletic with Hystrichopsyllini placed as sister to some species of Anomiopsyllini and Ctenopariini placed as sister to Carterettini. Ctenophthalmidae is grossly paraphyletic with the family broken into seven lineages dispersed on the tree. Most notably, Anomiopsyllini is paraphyletic. Pulicidae and Chimaeropsyllidae are both monophyletic and these families are sister groups. Ceratophyllomorpha is monophyletic and includes Ischnopsyllidae, Ceratophyllidae, and Leptopsyllidae. Leptopsyllidae is paraphyletic as are its constituent subfamilies Amphipsyllinae and Leptopsyllinae and the tribes Amphipsyllini and Leptopsyllini. Ischnopsyllidae is monophyletic. Ceratophyllidae is monophyletic, with a monophyletic Dactypsyllinae nested within Ceratophyllinae, rendering the latter group paraphyletic. Mapping of general host associations on our topology reveals an early association with mammals with four independent shifts to birds. © The Willi Hennig Society 2008.  相似文献   

7.
Psychodidae is a diverse family of flies with approximately 3000 described species in six subfamilies, including Phlebotominae vectors of human disease. Psychodidae has been the subject of few phylogenetic investigations and development of a stable classification has been hampered by poor understanding of the morphology of larvae, pupae and adults. Specimens were collected, and we analysed DNA sequence data from two nuclear genes for one or more representatives of all subfamilies. The subfamilies with multiple representatives included were resolved as monophyletic with good support. Placement of Horaiellinae, Sycoracinae and Trichomyiinae remains unclear, whereas Bruchomyiinae is hypothesized as the sister group to (Phlebotominae + Psychodinae). Representatives of some psychodine tribes were resolved in agreement with previous hypotheses. Relationships among and within subfamilies are discussed, and morphological characters supporting these relationships are reviewed. One compelling synapomorphy of the male genitalia supporting a relationship between Phlebotominae and Psychodinae is the presence of articulated surstyli with apical retinacula. Only cerci are present and sometimes developed into clasping structures in males of other subfamilies.  相似文献   

8.
The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. The largest of these families is that of the stiletto flies (Therevidae). A large‐scale (i.e. supermatrix) phylogeny of Therevidae is presented based on DNA sequence data from seven genetic loci (16S, 18S and 28S ribosomal DNA and four protein‐encoding genes: elongation factor 1‐alpha, triose phosphate isomerase, short‐wavelength rhodopsin and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase). Results are presented from Bayesian phylogenetic analyses of approximately 8.7 kb of sequence data for 204 taxa representing all subfamilies and genus groups of Therevidae. Our results strongly support the sister‐group relationship between Therevidae and Scenopinidae, with Apsilocephalidae as sister to Evocoidae. Previous estimates of stiletto fly phylogeny based on morphology or DNA sequence data, or supertree analysis, have failed to find significant support for relationships among subfamilies. We report for the first time strong support for the placement of the subfamily Phycinae as sister to the remaining Therevidae, originating during the Mid Cretaceous. As in previous studies, the sister‐group relationship between the species‐rich subfamilies Agapophytinae and Therevinae is strongly supported. Agapophytinae are recovered as monophyletic, inclusive of the Taenogera group. Therevinae comprise the bulk of the species richness in the family and appear to be a relatively recent and rapid radiation originating in the southern hemisphere (Australia + Antarctica + South America) during the Late Cretaceous. Genus groups are defined for all subfamilies based on these results.  相似文献   

9.
A phylogeny of green lacewings (Neuroptera: Chrysopidae) using anchored hybrid enrichment data is presented. Using this phylogenomic approach, we analysed 137 kb of sequence data (with < 10% missing) for 82 species in 50 genera of Chrysopidae under Bayesian and maximum likelihood criteria. We recovered a strongly supported tree topologically congruent with recently published phylogenies, especially relationships amongst higher‐level groups. The subfamily Nothochrysinae was recovered as paraphyletic, with one clade sister to the rest of Chrysopidae, and the second clade containing the nominal genus (Nothochrysa Navás) as sister to the subfamily Apochrysinae. Chrysopinae was recovered as a monophyletic with the monobasic Nothancylini tribe n. sister to the rest of the subfamily. Leucochrysini was recovered sister to Belonopterygini, and Chrysopini was rendered paraphyletic with respect to Ankylopterygini. Divergence times and diversification estimates indicate a major shift in rate in ancestral Chrysopini at the end of the Cretaceous, and the extensive radiation of Chrysopinae, the numerically dominant clade of green lacewings, began in the Mid‐Paleogene (c. 45 Ma).  相似文献   

10.
Members of the phlox family (Polemoniaceae) serve as useful models for studying various evolutionary and biological processes. Despite its biological importance, no family-wide phylogenetic estimate based on multiple DNA regions with complete generic sampling is available. Here, we analyze one nuclear and five chloroplast DNA sequence regions (nuclear ITS, chloroplast matK, trnL intron plus trnL-trnF intergeneric spacer, and the trnS-trnG, trnD-trnT, and psbM-trnD intergenic spacers) using parsimony and Bayesian methods, as well as assessments of congruence and long branch attraction, to explore phylogenetic relationships among 84 ingroup species representing all currently recognized Polemoniaceae genera. Relationships inferred from the ITS and concatenated chloroplast regions are similar overall. A combined analysis provides strong support for the monophyly of Polemoniaceae and subfamilies Acanthogilioideae, Cobaeoideae, and Polemonioideae. Relationships among subfamilies, and thus for the precise root of Polemoniaceae, remain poorly supported. Within the largest subfamily, Polemonioideae, four clades corresponding to tribes Polemonieae, Phlocideae, Gilieae, and Loeselieae receive strong support. The monogeneric Polemonieae appears sister to Phlocideae. Relationships within Polemonieae, Phlocideae, and Gilieae are mostly consistent between analyses and data permutations. Many relationships within Loeselieae remain uncertain. Overall, inferred phylogenetic relationships support a higher-level classification for Polemoniaceae proposed in 2000.  相似文献   

11.
The Carangidae represent a diverse family of marine fishes that include both ecologically and economically important species. Currently, there are four recognized tribes within the family, but phylogenetic relationships among them based on morphology are not resolved. In addition, the tribe Carangini contains species with a variety of body forms and no study has tried to interpret the evolution of this diversity. We used DNA sequences from the mitochondrial cytochrome b gene to reconstruct the phylogenetic history of 50 species from each of the four tribes of Carangidae and four carangoid outgroup taxa. We found support for the monophyly of three tribes within the Carangidae (Carangini, Naucratini, and Trachinotini); however, monophyly of the fourth tribe (Scomberoidini) remains questionable. A sister group relationship between the Carangini and the Naucratini is well supported. This clade is apparently sister to the Trachinotini plus Scomberoidini but there is uncertain support for this relationship. Additionally, we examined the evolution of body form within the tribe Carangini and determined that each of the predominant clades has a distinct evolutionary trend in body form. We tested three methods of phylogenetic inference, parsimony, maximum-likelihood, and Bayesian inference. Whereas the three analyses produced largely congruent hypotheses, they differed in several important relationships. Maximum-likelihood and Bayesian methods produced hypotheses with higher support values for deep branches. The Bayesian analysis was computationally much faster and yet produced phylogenetic hypotheses that were very similar to those of the maximum-likelihood analysis.  相似文献   

12.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

13.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

14.
New studies on malacostracan relationships have drawn attention to issues concerning monophyly of the order Mysidacea, manifested in recent crustacean classifications that treat the taxon as two separate orders, Lophogastrida and Mysida. We present molecular phylogenies of these orders based on complete sequences of nuclear small-subunit ribosomal DNA (18S rRNA), and morphological evidence is used to revise the classification of the order Mysida to better reflect evolutionary history. A secondary structure model for 18S rRNA was constructed and used to assign putative stem and loop regions to two groups of partitions for phylogenetic analyses. Phylogenies were estimated by maximum-likelihood, Bayesian inference, and maximum-parsimony. The analyses gave strong support for three independently derived lineages, represented by three monophyletic groups, Lophogastrida, Stygiomysida, and Mysida. The family Petalophthalmidae is considered as sister group to the family Mysidae, and Boreomysinae and Rhopalophthalminae are the most early derived of the Mysidae. The tribes contained in the current classification of the subfamily Mysinae are not well-supported by either molecular data or morphology.  相似文献   

15.
The first formal analysis of phylogenetic relationships among small-headed flies (Acroceridae) is presented based on DNA sequence data from two ribosomal (16S and 28S) and two protein-encoding genes: carbomoylphosphate synthase (CPS) domain of CAD (i.e., rudimentary locus) and cytochrome oxidase I (COI). DNA sequences from 40 species in 22 genera of Acroceridae (representing all three subfamilies) were compared with outgroup exemplars from Nemestrinidae, Stratiomyidae, Tabanidae, and Xylophagidae. Parsimony and Bayesian simultaneous analyses of the full data set recover a well-resolved and strongly supported hypothesis of phylogenetic relationships for major lineages within the family. Molecular evidence supports the monophyly of traditionally recognised subfamilies Philopotinae and Panopinae, but Acrocerinae are polyphyletic. Panopinae, sometimes considered "primitive" based on morphology and host-use, are always placed in a more derived position in the current study. Furthermore, these data support emerging morphological evidence that the type genus Acrocera Meigen, and its sister genus Sphaerops, are atypical acrocerids, comprising a sister lineage to all other Acroceridae. Based on the phylogeny generated in the simultaneous analysis, historical divergence times were estimated using Bayesian methodology constrained with fossil data. These estimates indicate Acroceridae likely evolved during the late Triassic but did not diversify greatly until the Cretaceous.  相似文献   

16.
Machaerotidae (Hemiptera: Auchenorrhyncha: Cercopoidea) is a taxonomically small but morphologically diverse family of spittlebugs with approximately 115 described species in 31 genera and an exclusively Palaeotropical distribution. Results are presented of the first molecular phylogenetic investigation of Machaerotidae, examining relationships among the currently recognized subfamilies and tribes, as well as determining the phylogenetic placement of the genera Enderleinia Schmidt, Neuromachaerota Schmidt, Labramachaerota Bell & Cryan, and Kyphomachaerota Bell & Cryan. DNA nucleotide sequence data from eight loci (12s rDNA, 16s rDNA, 18S rDNA, 28S rDNA, histone 2A, histone 3, wingless and NADH Dehydrogenase subunit 4) were analysed to reconstruct the phylogeny. The evidence generated in this study supports the following systematic conclusions: (i) Machaerotidae is a monophyletic family; (ii) Machaerotini, Hindoloidini (with the new inclusion of Kyphomachaerota), and Enderleiniini (excluding Kyphomachaerota and Apomachaerota Schmidt) are monophyletic tribes; (iii) the genus Apomachaerota was recovered as the most anciently diverged lineage of extant Machaerotidae, and a new subfamily (Apomachaerotinae subfam.n. ), is proposed on the basis of its phylogenetic placement as sister lineage to all other extant Machaerotidae.  相似文献   

17.
In this paper we included a very broad representation of grass family diversity (84% of tribes and 42% of genera). Phylogenetic inference was based on three plastid DNA regions rbcL, matK and trnL-F, using maximum parsimony and Bayesian methods. Our results resolved most of the subfamily relationships within the major clades (BEP and PACCMAD), which had previously been unclear, such as, among others the: (i) BEP and PACCMAD sister relationship, (ii) composition of clades and the sister-relationship of Ehrhartoideae and Bambusoideae + Pooideae, (iii) paraphyly of tribe Bambuseae, (iv) position of Gynerium as sister to Panicoideae, (v) phylogenetic position of Micrairoideae. With the presence of a relatively large amount of missing data, we were able to increase taxon sampling substantially in our analyses from 107 to 295 taxa. However, bootstrap support and to a lesser extent Bayesian inference posterior probabilities were generally lower in analyses involving missing data than those not including them. We produced a fully resolved phylogenetic summary tree for the grass family at subfamily level and indicated the most likely relationships of all included tribes in our analysis.  相似文献   

18.
Mitochondrial DNA sequences can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We made phylogenetic analyses of 19 species of Cervidae, with Bos taurus as the outgroup. We used neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods on whole mitochondrial genome sequences. The consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Plesiometacarpalia and Telemetacarpalia, and four tribes, Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. The divergence times in these families were estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock method; the results were consistent with those of previous studies. We concluded that the evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; this method could be used broadly in phylogenetic evolutionary analysis of animal taxa.  相似文献   

19.
There is currently a shortage of DNA regions known to be useful for phylogenetic research in palms (Arecaceae). We report the development and use of primers for amplifying and sequencing regions of the nuclear gene malate synthase. In palms the gene appears to be single-copy, with exon regions that are phylogenetically informative within the family. We constructed a phylogeny of 45 palms and five outgroup taxa using 428 bp of malate synthase exon regions. We found that some major clades within the family were recovered, but there was a lack of resolution among the genera in subfamilies Arecoideae, Ceroxyloideae, Coryphoideae, and Phytelephantoideae. In a second analysis, malate synthase exon regions totaling 1002 bp were sequenced for 16 palms and two outgroup taxa. There was increased bootstrap support for some groups and for the placement of the monotypic genus Nypa as sister to the rest of the family. A comparison with data sets from noncoding regions of the chloroplast genome indicates that malate synthase sequences are more variable and potentially contain more phylogenetic information. We found no evidence of multiple copies of the malate synthase gene in palm genomes.  相似文献   

20.
This study examined subfamilial relationships within Braconidae, using 4 kb of sequence data for 139 taxa. Genetic sampling included previously used markers for phylogenetic studies of Braconidae (28S and 18S rDNA) as well as new nuclear protein‐coding genes (CAD and ACC). Maximum likelihood and Bayesian inference of the concatenated dataset recovered a robust phylogeny, particularly for early divergences within the family. This study focused primarily on non‐cyclostome subfamilies, but the monophyly of the cyclostome complex was strongly supported. There was evidence supporting an independent clade, termed the aphidioid complex, as sister to the cyclostome complex of subfamilies. Maxfischeria was removed from Helconinae and placed within its own subfamily within the aphidioid complex. Most relationships within the cyclostome complex were poorly supported, probably because of lower taxonomic sampling within this group. Similar to other studies, there was strong support for the alysioid subcomplex containing Gnamptodontinae, Alysiinae, Opiinae and Exothecinae. Cenocoeliinae was recovered as sister to all other subfamilies within the euphoroid complex. Planitorus and Mannokeraia, previously placed in Betylobraconinae and Masoninae, respectively, were moved to the Euphorinae, and may share a close affiliation with Neoneurinae. Neoneurinae and Ecnomiinae were placed as tribes within Euphorinae. A sister relationship between the microgastroid and sigalphoid complexes was also recovered. The helconoid complex included a well‐supported lineage that is parasitic on lepidopteran larvae (macrocentroid subcomplex). Helconini was raised to subfamily status, and was recovered as sister to the macrocentroid subcomplex. Blacinae was demoted to tribal status and placed within the newly circumscribed subfamily Brachistinae, which also contains the tribes Diospilini, Brulleiini and Brachistini, all formerly in Helconinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号