首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hybridization on evolutionary processes are primarily determined by the differential between hybrid and parental species fitness. Assessing the impacts of hybridization can be challenging, however, as determining the relationship between individual fitness and the extent of introgression in wild populations is difficult. We evaluated the fitness consequences of hybridization for pure and hybrid females in a hybrid zone between two tidal marsh birds, the saltmarsh sparrow (Ammodramus caudacutus), a salt marsh obligate, and Nelson's sparrow (A. nelsoni), which has a broader ecological niche and a much younger evolutionary association with salt marshes. Biotic stressors associated with nesting in tidal environments suggest an important role for differential adaptation in shaping hybrid zone dynamics, with saltmarsh sparrows predicted to be better adapted to nesting in salt marshes. We collected DNA samples from adults (= 394) and nestlings (= 431) to determine the extent of introgression using 12 microsatellite loci and tested for the influence of extrinsic (nest placement) and intrinsic (genotype) factors on female reproductive success. We monitored nests (= 228), collected data on reproductive output, and estimated daily nest survival rates using female genotype and nest characteristics as covariates. To test for reduced survival of hybrid females, we also used capture data to assess the distribution of admixed male and female individuals across age classes. Reproductive success of females varied by genotypic class, but hybrids did not have intermediate success as predicted. Instead, we found that pure Nelson's sparrows had, on average, 33% lower hatching success than any other genotype, whereas F1/F2 hybrids, backcrossed Nelson's sparrows, and backcrossed and pure saltmarsh sparrows all had similar hatching success. We found no effect of genotype or nest placement on daily nest survival probabilities. However, hybrid individuals with a higher proportion of saltmarsh sparrow alleles exhibit nesting behaviours better suited to nesting successfully in tidal marshes. Further, while the proportion of F1/F2 individuals was similar between nestling and adult males, we found that the proportion of F1/F2 individuals was 2.3 times greater in nestling females compared with adult females, indicating reduced survival of F1 females. We conclude that differences in reproductive success among pure and admixed individuals coupled with intrinsic mechanisms (reduced survival in F1 females) shape hybrid zone dynamics in this system.  相似文献   

2.
Parallel phenotypic differentiation is generally attributed to parallel adaptive divergence as an evolutionary response to similar environmental contrasts. Such parallelism may actually originate from several evolutionary scenarios ranging from repeated parallel divergence caused by divergent selection to a unique divergence event followed by gene flow. Reconstructing the evolutionary history underlying parallel phenotypic differentiation is thus fundamental to understand the relative contribution of demography and selection on genomic divergence during speciation. In this study, we investigate the divergence history of replicate European whitefish (Coregonus lavaretus), limnetic and benthic species pairs from two lakes in Norway and two lakes in Switzerland. Demographic models accounting for semi‐permeability and linked selection were fitted to the unfolded joint allele frequency spectrum built from genome‐wide SNPs and compared to each other in each species pair. We found strong support for a model of asymmetrical post‐glacial secondary contact between glacial lineages in all four lakes. Moreover, our results suggest that heterogeneous genomic differentiation has been shaped by the joint action of linked selection accelerating lineage sorting during allopatry, and heterogeneous migration eroding divergence at different rates along the genome following secondary contact. Our analyses reveal how the interplay between demography, selection and historical contingency has influenced the levels of diversity observed in previous whitefish phylogeographic studies. This study thus provides new insights into the historical demographic and selective processes that shaped the divergence associated with ecological speciation in European whitefish.  相似文献   

3.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

4.
The relative roles of natural and sexual selection in promoting evolutionary lineage divergence remains controversial and difficult to assess in natural systems. Local adaptation through natural selection is known to play a central role in promoting evolutionary divergence, yet secondary sexual traits can vary widely among species in recent radiations, suggesting that sexual selection may also be important in the early stages of speciation. Here, we compare rates of divergence in ecologically relevant traits (morphology) and sexually selected signalling traits (coloration) relative to neutral structure in genome‐wide molecular markers and examine patterns of variation in sexual dichromatism to explore the roles of natural and sexual selection in the diversification of the songbird genus Junco (Aves: Passerellidae). Juncos include divergent lineages in Central America and several dark‐eyed junco (J. hyemalis) lineages that diversified recently as the group recolonized North America following the last glacial maximum (ca. 18,000 years ago). We found an accelerated rate of divergence in sexually selected characters relative to ecologically relevant traits. Moreover, sexual dichromatism measurements suggested a positive relationship between the degree of colour divergence and the strength of sexual selection when controlling for neutral genetic distance. We also found a positive correlation between dichromatism and latitude, which coincides with the geographic axis of decreasing lineage age in juncos but also with a steep ecological gradient. Finally, we found significant associations between genome‐wide variants linked to functional genes and proxies of both sexual and natural selection. These results suggest that the joint effects of sexual and ecological selection have played a prominent role in the junco radiation.  相似文献   

5.
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence.  相似文献   

6.
Local environmental features can shape hybrid zone dynamics when hybrids are bounded by ecotones or when patchily distributed habitat types lead to a corresponding mosaic of genotypes. We investigated the role of marsh‐level characteristics in shaping a hybrid zone between two recently diverged avian taxa – Saltmarsh (Ammodramus caudacutus) and Nelson's (A. nelsoni) sparrows. These species occupy different niches where allopatric, with caudacutus restricted to coastal marshes and nelsoni found in a broader array of wetland and grassland habitats and co‐occur in tidal marshes in sympatry. We determined the influence of habitat types on the distribution of pure and hybrid sparrows and assessed the degree of overlap in the ecological niche of each taxon. To do this, we sampled and genotyped 305 sparrows from 34 marshes across the hybrid zone and from adjacent regions. We used linear regression to test for associations between marsh characteristics and the distribution of pure and admixed sparrows. We found a positive correlation between genotype and environmental variables with a patchy distribution of genotypes and habitats across the hybrid zone. Ecological niche models suggest that the hybrid niche was more similar to that of A. nelsoni and habitat suitability was influenced strongly by distance from coastline. Our results support a mosaic model of hybrid zone maintenance, suggesting a role for local environmental features in shaping the distribution and frequency of pure species and hybrids across space.  相似文献   

7.
The study of ecological convergence, the evolution of similar traits on multiple occasions in response to similar conditions, is a powerful method for developing and testing adaptive hypotheses. However, despite the great attention paid to geographic variation and the foraging ecology of birds, surprisingly few cases of convergent or parallel feeding adaptations have been adequately documented. In this study, we document a biogeographic pattern of parallel bill morphology across 10 sparrow taxa endemic to tidal marshes. All North American tidal marsh sparrows display parallel differentiation from close relatives in other habitats, suggesting that selection on bill morphology is strong. Relative to their body mass, tidal marsh sparrows have longer, thinner bills than their non-tidal marsh counterparts, which is likely an adaptation for consuming more invertebrates and fewer seeds, as well as for probing in sediment crevices to capture prey. Published data on tidal marsh food resources and diet of the relevant taxa support this hypothesis. This morphological differentiation is most pronounced between sister taxa with the greatest estimated divergence times, but is found even in taxa that show little or no structure in molecular genetic markers. We, therefore, speculate that tidal marsh ecosystems are likely settings for ecological speciation.  相似文献   

8.
Evolutionary radiations have been well documented in plants and insects, and natural selection may often underly these radiations. If radiations are adaptive, the diversity of species could be due to ecological speciation in these lineages. Agromyzid flies exhibit patterns of repeated host‐associated radiations. We investigated whether host‐associated population divergence and evidence of divergent selection exist in the leaf miner Phytomyza glabricola on its sympatric host plants, the holly species, Ilex coriacea and I. glabra. Using AFLPs and nuclear sequence data, we found substantial genetic divergence between host‐associated populations of these flies throughout their geographic range. Genome scans using the AFLP data identified 13 loci under divergent selection, consistent with processes of ecological speciation. EF‐1α data suggest that I. glabra is the original host of P. glabricola and that I. coriacea is the novel host, but the AFLP data are ambiguous with regard to directionality of the host shift.  相似文献   

9.
Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual‐based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection.  相似文献   

10.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   

11.
12.
The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low‐risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post‐speciation. The Central American live‐bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.  相似文献   

13.
Perhaps Darwin would agree that speciation is no longer the mystery of mysteries that it used to be. It is now generally accepted that evolution by natural selection can contribute to ecological adaptation, resulting in the evolution of reproductive barriers and, hence, to the evolution of new species (Schluter & Conte 2009 ; Meyer 2011 ; Nosil 2012 ). From genes that encode silencing proteins that cause infertility in hybrid mice (Mihola et al. 2009 ), to segregation distorters linked to speciation in fruit flies (Phadnis & Orr 2009 ), or pollinator‐mediated selection on flower colour alleles driving reinforcement in Texan wildflowers (Hopkins & Rausher 2012 ), characterization of the genes that drive speciation is providing clues to the origin of species (Nosil & Schluter 2011 ). It is becoming apparent that, while recent work continues to overturn historical ideas about sympatric speciation (e.g. Barluenga et al. 2006 ), ecological circumstances strongly influence patterns of genomic divergence, and ultimately the establishment of reproductive isolation when gene flow is present (Elmer & Meyer 2011 ). Less clear, however, are the genetic mechanisms that cause speciation, particularly when ongoing gene flow is occurring. Now, in this issue, Franchini et al. ( 2014 ) employ a classic genetic mapping approach augmented with new genomic tools to elucidate the genomic architecture of ecologically divergent body shapes in a pair of sympatric crater lake cichlid fishes. From over 450 segregating SNPs in an F2 cross, 72 SNPs were linked to 11 QTL associated with external morphology measured by means of traditional and geometric morphometrics. Annotation of two highly supported QTL further pointed to genes that might contribute to ecological divergence in body shape in Midas cichlids, overall supporting the hypothesis that genomic regions of large phenotypic effect may be contributing to early‐stage divergence in Midas cichlids.  相似文献   

14.
Understanding ecological niche evolution over evolutionary timescales is crucial to elucidating the biogeographic history of organisms. Here, we used, for the first time, climate‐based ecological niche models (ENMs) to test hypotheses about ecological divergence and speciation processes between sister species pairs of lemurs (genus Eulemur) in Madagascar. We produced ENMs for eight species, all of which had significant validation support. Among the four sister species pairs, we found nonequivalent niches between sisters, varying degrees of niche overlap in ecological and geographic space, and support for multiple divergence processes. Specifically, three sister‐pair comparisons supported the null model that niches are no more divergent than the available background region. These findings are consistent with an allopatric speciation model, and for two sister pairs (E. collaris–E. cinereiceps and E. rufus–E. rufifrons), a riverine barrier has been previously proposed for driving allopatric speciation. However, for the fourth sister pair E. flavifrons–E. macaco, we found support for significant niche divergence, and consistent with their parapatric distribution on an ecotone and the lack of obvious geographic barriers, these findings most strongly support a parapatric model of speciation. These analyses thus suggest that various speciation processes have led to diversification among closely related Eulemur species.  相似文献   

15.
Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome‐wide patterns of within‐ and between‐ species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole‐genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long‐term balancing selection have also been crucial components in shaping patterns of genome‐wide variation during the speciation process.  相似文献   

16.
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.  相似文献   

17.
Despite substantial interest in coevolution's role in diversification, examples of coevolution contributing to speciation have been elusive. Here, we build upon past studies that have shown both coevolution between South Hills crossbills and lodgepole pine (Pinus contorta), and high levels of reproductive isolation between South Hills crossbills and other ecotypes in the North American red crossbill (Loxia curvirostra) complex. We used genotyping by sequencing to generate population genomic data and applied phylogenetic and population genetic analyses to characterize the genetic structure within and among nine of the ecotypes. Although genome‐wide divergence was slight between ecotypes (FST = 0.011–0.035), we found evidence of relative genetic differentiation (as measured by FST) between and genetic cohesiveness within many of them. As expected for nomadic and opportunistic breeders, we detected no evidence of isolation by distance. The one sedentary ecotype, the South Hills crossbill, was genetically most distinct because of elevated divergence at a small number of loci rather than pronounced overall genome‐wide divergence. These findings suggest that mechanisms related to recent local coevolution between South Hills crossbills and lodgepole pine (e.g. strong resource‐based density dependence limiting gene flow) have been associated with genome divergence in the face of gene flow. Our results further characterize a striking example of coevolution driving speciation within perhaps as little as 6000 years.  相似文献   

18.
Hybrid zones of ecologically divergent populations are ideal systems to study the interaction between natural selection and gene flow during the initial stages of speciation. Here, we perform an amplified fragment length polymorphism (AFLP) genome scan in parallel hybrid zones between divergent ecotypes of the marine snail Littorina saxatilis, which is considered a model case for the study of ecological speciation. Ridged‐Banded (RB) and Smooth‐Unbanded (SU) ecotypes are adapted to different shore levels and microhabitats, although they present a sympatric distribution at the mid‐shore where they meet and mate (partially assortatively). We used shell morphology, outlier and nonoutlier AFLP loci from RB, SU and hybrid specimens captured in sympatry to determine the level of phenotypic and genetic introgression. We found different levels of introgression at parallel hybrid zones and nonoutlier loci showed more gene flow with greater phenotypic introgression. These results were independent from the phylogeography of the studied populations, but not from the local ecological conditions. Genetic variation at outlier loci was highly correlated with phenotypic variation. In addition, we used the relationship between genetic and phenotypic variation to estimate the heritability of morphological traits and to identify potential Quantitative Trait Loci to be confirmed in future crosses. These results suggest that ecology (exogenous selection) plays an important role in this hybrid zone. Thus, ecologically based divergent natural selection is responsible, simultaneously, for both ecotype divergence and hybridization. On the other hand, genetic introgression occurs only at neutral loci (nonoutliers). In the future, genome‐wide studies and controlled crosses would give more valuable information about this process of speciation in the face of gene flow.  相似文献   

19.
Levels of genetic differentiation between populations can be highly variable across the genome, with divergent selection contributing to such heterogeneous genomic divergence. For example, loci under divergent selection and those tightly physically linked to them may exhibit stronger differentiation than neutral regions with weak or no linkage to such loci. Divergent selection can also increase genome‐wide neutral differentiation by reducing gene flow (e.g. by causing ecological speciation), thus promoting divergence via the stochastic effects of genetic drift. These consequences of divergent selection are being reported in recently accumulating studies that identify: (i) ‘outlier loci’ with higher levels of divergence than expected under neutrality, and (ii) a positive association between the degree of adaptive phenotypic divergence and levels of molecular genetic differentiation across population pairs [‘isolation by adaptation’ (IBA)]. The latter pattern arises because as adaptive divergence increases, gene flow is reduced (thereby promoting drift) and genetic hitchhiking increased. Here, we review and integrate these previously disconnected concepts and literatures. We find that studies generally report 5–10% of loci to be outliers. These selected regions were often dispersed across the genome, commonly exhibited replicated divergence across different population pairs, and could sometimes be associated with specific ecological variables. IBA was not infrequently observed, even at neutral loci putatively unlinked to those under divergent selection. Overall, we conclude that divergent selection makes diverse contributions to heterogeneous genomic divergence. Nonetheless, the number, size, and distribution of genomic regions affected by selection varied substantially among studies, leading us to discuss the potential role of divergent selection in the growth of regions of differentiation (i.e. genomic islands of divergence), a topic in need of future investigation.  相似文献   

20.
Ecological speciation is facilitated when divergent adaptation has direct effects on selective mating. Divergent sensory adaptation could generate such direct effects, by mediating both ecological performance and mate selection. In aquatic environments, light attenuation creates distinct photic environments, generating divergent selection on visual systems. Consequently, divergent sensory drive has been implicated in the diversification of several fish species. Here, we experimentally test whether divergent visual adaptation explains the divergence of mate preferences in Haplochromine cichlids. Blue and red Pundamilia co‐occur across south‐eastern Lake Victoria. They inhabit different photic conditions and have distinct visual system properties. Previously, we documented that rearing fish under different light conditions influences female preference for blue versus red males. Here, we examine to what extent variation in female mate preference can be explained by variation in visual system properties, testing the causal link between visual perception and preference. We find that our experimental light manipulations influence opsin expression, suggesting a potential role for phenotypic plasticity in optimizing visual performance. However, variation in opsin expression does not explain species differences in female preference. Instead, female preference covaries with allelic variation in the long‐wavelength‐sensitive opsin gene (LWS), when assessed under broad‐spectrum light. Taken together, our study presents evidence for environmental plasticity in opsin expression and confirms the important role of colour perception in shaping female mate preferences in Pundamilia. However, it does not constitute unequivocal evidence for the direct effects of visual adaptation on assortative mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号