首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change‐induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate‐based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape‐scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh‐to‐mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.  相似文献   

3.
4.
5.
The widely distributed temperate grassland species Dactylis glomerata was grown in competition with Ranunculus acris at two different watering regimes and exposed for 20 weeks to eight ozone treatments with mean concentrations ranging from 16.2 to 89.5 ppb, representing pre‐industrial to predicted post‐2100 ozone climates. Measurements of stomatal conductance were used to parameterize ozone flux models for D. glomerata. For the first time, a modification was made to the standard flux model to account for the observed decrease in sensitivity of stomatal conductance to reduced water availability with increasing ozone. Comparison of calculated cumulative ozone flux between the two versions of the model demonstrated that exclusion of the ozone effect on stomatal conductance in the standard flux model led to a large underestimation of ozone fluxes at mid‐ to high‐ozone concentrations. For example, at a mean ozone concentration of 55 ppb (as predicted for many temperate areas in the next few decades), the standard flux model underestimated ozone fluxes in D. glomerata by 30–40% under reduced water availability. Although the modified flux model does not markedly change the flux‐based critical level for D. glomerata, this study indicates that use of the standard flux model to quantify the risk of ozone damage to a widely distributed grassland species such as D. glomerata in areas where high ozone concentrations and reduced soil moisture coincide could lead to an underestimation of effects. Thus, this study has shown that under predicted future climate change and ozone scenarios, ozone effects on vegetation may be even greater than previously predicted in the drier areas of the world.  相似文献   

6.
Climate refugia are regions that animals can retreat to, persist in and potentially then expand from under changing environmental conditions. Most forecasts of climate change refugia for species are based on correlative species distribution models (SDMs) using long‐term climate averages, projected to future climate scenarios. Limitations of such methods include the need to extrapolate into novel environments and uncertainty regarding the extent to which proximate variables included in the model capture processes driving distribution limits (and thus can be assumed to provide reliable predictions under new conditions). These limitations are well documented; however, their impact on the quality of climate refugia predictions is difficult to quantify. Here, we develop a detailed bioenergetics model for the koala. It indicates that range limits are driven by heat‐induced water stress, with the timing of rainfall and heat waves limiting the koala in the warmer parts of its range. We compare refugia predictions from the bioenergetics model with predictions from a suite of competing correlative SDMs under a range of future climate scenarios. SDMs were fitted using combinations of long‐term climate and weather extremes variables, to test how well each set of predictions captures the knowledge embedded in the bioenergetics model. Correlative models produced broadly similar predictions to the bioenergetics model across much of the species' current range – with SDMs that included weather extremes showing highest congruence. However, predictions in some regions diverged significantly when projecting to future climates due to the breakdown in correlation between climate variables. We provide unique insight into the mechanisms driving koala distribution and illustrate the importance of subtle relationships between the timing of weather events, particularly rain relative to hot‐spells, in driving species–climate relationships and distributions. By unpacking the mechanisms captured by correlative SDMs, we can increase our certainty in forecasts of climate change impacts on species.  相似文献   

7.
According to the IPCC, the global average temperature is likely to increase by 1.4–5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so‐far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial–interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow‐skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model‐testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow‐skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the whole Arctic food web and ecosystem.  相似文献   

8.
Choosing drought‐tolerant planting stock in reforestation programs may help adapt forests to climate change. To inform such reforestation strategies, we test lodgepole pine (Pinus contorta Doug. ex Loud. var latifolia Englm.) population response to drought and infer potential benefits of a northward transfer of seeds from drier, southern environments. The objective is addressed by combining dendroecological growth analysis with long‐term genetic field trials. Over 500 trees originating from 23 populations across western North America were destructively sampled in three experimental sites in southern British Columbia, representing a climate warming scenario. Growth after 32 years from provenances transferred southward or northward over long distances was significantly lower than growth of local populations. All populations were affected by a severe natural drought event in 2002. The provenances from the most southern locations showed the highest drought tolerance but low productivity. Local provenances were productive and drought tolerant. Provenances from the boreal north showed lower productivity and less drought tolerance on southern test sites than all other sources, implying that maladaptation to drought may prevent boreal populations from taking full advantage of more favorable growing conditions under projected climate change.  相似文献   

9.
10.
Summary   The potential impacts of climate change on threatened species, populations and communities are considered. It is suggested that minor changes to legislation will be required to address the consequences of movement of threatened species but that threatened species legislation will remain relevant as an important tool for prioritizing conservation actions. The importance of taking proactive steps now to permit future movement of species and communities across fragmented landscapes is emphasized.  相似文献   

11.
Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze‐like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42‐year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.  相似文献   

12.
Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patterns, we hypothesized that temperature increases will have a greater negative impact on female plants compared with co‐occurring male plants of dioecious species. This hypothesis was tested by examining the whole‐plant carbon and water relations of 10‐year‐old female (= 18) and male (= 13) Acer negundo Sarg. trees grown in a common garden in Salt Lake City, UT. The trees were established from cuttings collected where the growing season temperature averaged about 6.5 °C cooler than at the common garden. During May and June, stem sap flux (Js) was similar between genders, but averaged 25% higher in males during the warmer months of July and August. Daytime canopy stomatal conductance (gs) per unit leaf area was 12% higher in females in May : June, but was 11% higher in males in July : August. We combined measurements of sap flux–scaled transpiration with measurements of tree allometry and δ13C of leaf soluble sugars to estimate whole‐tree carbon assimilation (Atree) and water use efficiency (WUE) (Atree : Etree). Atree was similar between genders until late August when Atree was 32% higher in male trees. Atree : Etree was on average 7% higher in females than in males during the growing season. Patterns of Js, gs, Atree and Atree : Etree in the present study were in contrast to those previously reported for A. negundo genders under native growing season temperatures. Results suggest that the spatial segregation of the sexes could shift under global warming such that female plants lose their dominance in high‐resource habitats, and males increase their dominance in relatively lower‐resource habitats.  相似文献   

13.
Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long‐term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed‐effects modeling to examine the sensitivity of growth in a long‐lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi‐decadal biochronology (1952–2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries.  相似文献   

14.
15.
16.
17.
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past.  相似文献   

18.
Restoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combined with limited understanding about how weather conditions influence restoration outcomes, and increasing recognition that one‐time seeding approaches can fail if they do not occur during appropriate plant establishment conditions. The sagebrush biome, which once covered over 620,000 km2 of western North America, is a prime example of a pressing dryland restoration challenge for which restoration success has been variable. We analyzed field data on Artemisia tridentata (big sagebrush) restoration collected at 771 plots in 177 wildfire sites across its western range, and used process‐based ecohydrological modeling to identify factors leading to its establishment. Our results indicate big sagebrush occurrence is most strongly associated with relatively cool temperatures and wet soils in the first spring after seeding. In particular, the amount of winter snowpack, but not total precipitation, helped explain the availability of spring soil moisture and restoration success. We also find considerable interannual variability in the probability of sagebrush establishment. Adaptive management strategies that target seeding during cool, wet years or mitigate effects of variability through repeated seeding may improve the likelihood of successful restoration in dryland ecosystems. Given consistent projections of increasing temperatures, declining snowpack, and increasing weather variability throughout midlatitude drylands, weather‐centric adaptive management approaches to restoration will be increasingly important for dryland restoration success.  相似文献   

19.
Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900–1930), recent (1981–2010), and future (2071–2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May – September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50–80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号