首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The variability in regional species richness is determined by the balance between speciation, extinction, and migration, but the underlying causes of high species richness in some regions (e.g. tropics, Mediterranean ecosystems) are challenging to explain. Species richness variability may be amplified by biotic feedbacks that promote species richness in some areas, while decreasing elsewhere. Following the example of species abundance, we speculated that species richness per area in arbitrary geographic units (e.g. quarter-degree squares) follows a hollow-shaped curve with the ranks of species richness to yield a species richness rank (SRR) curve. The hollowness of such an SRR curve may indicate biotic feedbacks.  相似文献   

2.
    
Bird species richness is mediated by local, regional, and historical factors, for example, competition, environmental heterogeneity, contemporary, and historical climate. Here, we related bird species richness with phylogenetic relatedness of bird assemblages, plant species richness, topography, contemporary climate, and glacial‐interglacial climate change to investigate the relative importance of these factors. This study was conducted in Inner Mongolia, an arid and semiarid region with diverse vegetation types and strong species richness gradients. The following associated variables were included as follows: phylogenetic relatedness of bird assemblages (Net Relatedness Index, NRI), plant species richness, altitudinal range, contemporary climate (mean annual temperature and precipitation, MAT and MAP), and contemporary‐Last Glacial Maximum (LGM) change in climate (change in MAT and change in MAP). Ordinary least squares linear, simultaneous autoregressive linear, and Random Forest models were used to assess the associations between these variables and bird species richness across this region. We found that bird species richness was correlated negatively with NRI and positively with plant species richness and altitudinal range, with no significant correlations with contemporary climate and glacial–interglacial climate change. The six best combinations of variables ranked by Random Forest models consistently included NRI, plant species richness, and contemporary‐LGM change in MAT. Our results suggest important roles of local ecological factors in shaping the distribution of bird species richness across this semiarid region. Our findings highlight the potential importance of these local ecological factors, for example, environmental heterogeneity, habitat filtering, and biotic interactions, in biodiversity maintenance.  相似文献   

3.
环境梯度下蒙古栎群落的物种多样性特征   总被引:18,自引:1,他引:18  
通过样地法研究了东北地区处于不同经度、纬度和海拔的 13个地点蒙古栎群落的物种丰富度、Gini指数、PIE指数、Shannon指数和 Pielou指数 ,利用相关和回归的统计方法分析了不同地点物种的丰富度指数、Simpson多样性指数和 Shannon多样性指数与各地所处的经度、纬度和海拔的关系。结果发现 :不仅不同地点 (较大尺度 )的物种丰富度和多样性指数均有差异 ,即使在相同的地点 (较小尺度 ) ,物种丰富度及多样性指数也有差异 ,有时还具有很大的差异 ,呈现空间异质性分布的特征 ;因为影响这些多样性指数的环境因子更加复杂 ,不仅受经度、纬度和海拔的影响 ,也受地形、群落的年龄、干扰史等多种生态因子影响。不同地点的物种丰富度与海拔和纬度都具有明显的相关性 (p<0 .0 5 ) ,物种丰富度随海拔和纬度的升高而降低 ,依据显著度的大小可以推测物种丰富度与海拔的相关性比与纬度的相关性更密切 ;蒙古栎群落不同类群的植物种的丰富度具有不同的分布格局 ,木本植物的丰富度与当地纬度具有明显的相关性 (p<0 .0 5 ) ,而与所在地的海拔没有显著的关系 (p>0 .0 5 ) ,而草本植物受海拔的影响更显著 (p<0 .0 5 ) ,而与纬度之间没有显著的关系 (p>0 .0 5 )。群落的 Gini指数、PIE指数、Shannon指数和Pielou指数未发现与海  相似文献   

4.
    
A multiple regression analysis was performed upon selected environmental variables for a series of islands in the British Isles, to establish their effects upon the size of the butterfly fauna, measured as he number of species regularly breeding, SB. So that the data be normally distributed, the regression analyses were performed upon log10 transformed data only, with the data for outliers, mainland Britain and Ireland, the two largest islands, excluded. Most highly correlated with the number of butterfly species breeding upon an island is the number breeding within a 25 km radius of the nearest point of the mainland, r2=0.5941, followed by the correlations with the latitude of the mid-point of the island, r2=0.5541, the number of plant species comprising the island Hora, r2=0.5225, and the distance separating the island from the mainland, r2=0.4514. A partial correlation analysis confirms the importance of the parameters distance separating the island from the mainland, D1, and the size of the faunal source SF, and rejects the importance of the size of the flora and the latitude of the island. This is further confirmed by the results of a step-wise regression analysis, the two variables D1 and SF accounting for 66% of the variation of the butterfly fauna. If an alternative measure of isolation, D2, which allows for the geographical clumping of islands, is combined with the variable SF, then 69% of the variation of the butterfly fauna is accounted for.  相似文献   

5.
A multiple regression analysis was performed upon selected environmental variables for a series of islands in the British Isles, to establish their effects upon the size of the butterfly fauna, measured as he number of species regularly breeding, SB .
So that the data be normally distributed, the regression analyses were performed upon log10 transformed data only, with the data for outliers, mainland Britain and Ireland, the two largest islands, excluded.
Most highly correlated with the number of butterfly species breeding upon an island is the number breeding within a 25 km radius of the nearest point of the mainland, r 2=0.5941, followed by the correlations with the latitude of the mid-point of the island, r 2=0.5541, the number of plant species comprising the island Hora, r 2=0.5225, and the distance separating the island from the mainland, r 2=0.4514.
A partial correlation analysis confirms the importance of the parameters distance separating the island from the mainland, D 1, and the size of the faunal source S F , and rejects the importance of the size of the flora and the latitude of the island. This is further confirmed by the results of a step-wise regression analysis, the two variables D 1 and SF accounting for 66% of the variation of the butterfly fauna.
If an alternative measure of isolation, D 2, which allows for the geographical clumping of islands, is combined with the variable SF , then 69% of the variation of the butterfly fauna is accounted for.  相似文献   

6.
7.
    
Climate change is likely to impact multiple dimensions of biodiversity. Species range shifts are expected and may drive changes in the composition of species assemblages. In some regions, changes in climate may precipitate the loss of geographically restricted, niche specialists and facilitate their replacement by more widespread, niche generalists, leading to decreases in β-diversity and biotic homogenization. However, in other regions climate change may drive local extinctions and range contraction, leading to increases in β-diversity and biotic heterogenization. Regional topography should be a strong determinant of such changes as mountainous areas often are home to many geographically restricted species, whereas lowlands and plains are more often inhabited by widespread generalists. Climate warming, therefore, may simultaneously bring about opposite trends in β-diversity in mountainous highlands versus relatively flat lowlands. To test this hypothesis, we used species distribution modelling to map the present-day distributions of 2669 Neotropical anuran species, and then generated projections of their future distributions assuming future climate change scenarios. Using traditional metrics of β-diversity, we mapped shifts in biotic homogenization across the entire Neotropical region. We used generalized additive models to then evaluate how changes in β-diversity were associated with shifts in species richness, phylogenetic diversity and one measure of ecological generalism. Consistent with our hypothesis, we find increasing biotic homogenization in most highlands, associated with increased numbers of generalists and, to a lesser extent, losses of specialists, leading to an overall increase in alpha diversity, but lower mean phylogenetic diversity. In the lowlands, biotic heterogenization was more common, and primarily driven by local extinctions of generalists, leading to lower α-diversity, but higher mean phylogenetic diversity. Our results suggest that impacts of climate change on β-diversity are likely to vary regionally, but will generally lead to lower diversity, with increases in β-diversity offset by decreases in α-diversity.  相似文献   

8.
    
Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water‐resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape‐scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi‐scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline.  相似文献   

9.
10.
1. Despite the growing view that biodiversity provides a unifying theme in river ecology, global perspectives on richness in riverine landscapes are limited. As a result, there is little theory or quantitative data on features that might have influenced global patterns in riverine richness, nor are there clear indications of which riverine landscapes are important to conservation at the global scale. As conspicuous elements of the vertebrate fauna of riverine landscapes, we mapped the global distributions of all of the world's specialist riverine birds and assessed their richness in relation to latitude, altitude, primary productivity and geomorphological complexity (surface configuration). 2. Specialist riverine birds, typical of high‐energy riverine landscapes and dependent wholly or partly on production from river ecosystems, occur in 16 families. They are represented by an estimated 60 species divided equally between the passerines and non‐passerines. Major radiation has occurred among different families on different continents, indicating that birds have evolved several times into the niches provided by riverine landscapes. 3. Continental richness varies from four species in Europe to 28 in Asia, with richness on the latter continent disproportionately larger than would be expected from a random distribution with respect to land area. Richness is greatest in mountainous regions at latitudes of 20–40°N in the riverine landscapes of the Himalayan mountains, where 13 species overlap in range. 4. Family, genus and species richness in specialist riverine birds all increase significantly with productivity and surface configuration (i.e. relief). However, family richness was the best single predictor of the numbers of species or genera. In keeping with the effect of surface configuration, river‐bird richness peaks globally at 1300–1400 m altitude, and most species occur typically on small, fast rivers where they feed predominantly on invertebrates. Increased lengths of such streams in areas of high relief and rainfall might have been responsible for species–area effects. 5. We propose the hypothesis that the diversity in channel forms and habitats in riverine landscapes, in addition to high temperature and primary productivity, have been prerequisites to the development of global patterns in the richness of specialist riverine organisms. We advocate tests of this hypothesis in other taxonomic groups. We draw attention, however, to the challenges of categorically defining riverine organisms in such tests because (i) rivers grade into many other habitat types across several different ecotones and (ii) `terrestrialisation' processes in riverine landscapes means that they offer habitat for organisms whose evolutionary origins are not exclusively riverine.  相似文献   

11.
We tested the hypothesis that biodiversity decreases the spatial variability of biomass production between subplots taken within experimental grassland plots. Our findings supported this hypothesis if functional diversity (weighted Rao's Q ) was considered. Further analyses revealed that diversity in rooting depth and clonal growth form were the most important components of functional diversity stabilizing productivity. Using species or functional group richness as diversity measures there was no significant effect on spatial variability of biomass production, demonstrating the importance of the biodiversity component considered. Moreover, we found a significant increase in spatial variability of productivity with decreasing size of harvested area, suggesting small-scale heterogeneity as an important driver. The ability of diverse communities to stabilize biomass production across spatial heterogeneity may be due to complementary use of spatial niches. Nevertheless, the positive effect of functional diversity on spatial stability appears to be less pronounced than previously reported effects on temporal stability.  相似文献   

12.
SHORT NOTES     
Hockey, P.A.R., Plagényi, É.E., Turpie, J.K. &; Phillips, T.E. 1996. Foraging behaviour of Crab Plovers Dromas ardeola at Mida Creek, Kenya. Ostrich 67:33-44.

The foraging behaviour of Crab Plovers is directly analogous to the ‘walk-stop-search-walk’ hunting behaviour of true plovers, and changes slightly depending whether the birds are foraging on sand or in water: they are nonterritorial when foraging. Crabs dominate the diet, but other invertebrates and fish are also eaten. Foraging efficiency increases with age and adults and subadults are able to satisfy their daily energy requirements in a single tidal cycle. The population of Crab Plovers at Mida Creek was much larger in 1994 than in 1992, but in 1994 adults achieved much higher intake rates than in 1992, suggesting considerable year-to-year variation in the carrying capacity of Mida Creek for Crab Plovers. The world population of 43–50 000 birds breeds at very few colonies and the species is thus a potential conservation concern. Because of the relative accessibility of large concentrations of Crab Plovers away from the breeding grounds, we suggest that a programme to monitor numbers and population demography should be targeted at nonbreeding aggregations.  相似文献   

13.
Climate change has the potential to influence the persistence of ecological communities by altering their stability properties. One of the major drivers of community stability is species diversity, which is itself expected to be altered by climate change in many systems. The extent to which climatic effects on community stability may be buffered by the influence of species interactions on diversity is, however, poorly understood because of a paucity of studies incorporating interactions between abiotic and biotic factors. Here, I report results of a 10-year field experiment, the past 7 years of which have focused on effects of ongoing warming and herbivore removal on diversity and stability within the plant community, where competitive species interactions are mediated by exploitation through herbivory. Across the entire plant community, stability increased with diversity, but both stability and diversity were reduced by herbivore removal, warming and their interaction. Within the most species-rich functional group in the community, forbs, warming reduced species diversity, and both warming and herbivore removal reduced the strength of the relationship between diversity and stability. Species interactions, such as exploitation, may thus buffer communities against destabilizing influences of climate change, and intact populations of large herbivores, in particular, may prove important in maintaining and promoting plant community diversity and stability in a changing climate.  相似文献   

14.
  1. Predation may significantly control number and density of coexisting species. The effects of predation on species diversity have traditionally been tested in experiments and theoretical models of simple trophic systems. In complex natural ecosystems, however, disentangling multiple sources of variation is difficult. In groundwater-fed environments, a significant effect of predation can be expected due to the relatively stable environmental conditions; however, it has never been properly examined.
  2. We analysed species diversity and total abundance of macroinvertebrate assemblages in 48 Western Carpathian spring fens, separately for whole sites and mesohabitat/season, and partitioned the effects of predation intensity from those of environmental variables in robust models using a bootstrapping technique. We verified our results by accounting for taxa resistant to predation.
  3. The assumption that predation-mediated coexistence of species is the main mechanism responsible for the relatively species-rich assemblages in the Western Carpathian spring fens was not supported. However, predation may significantly influence abundance of non-predatory species and, under some conditions, it may contribute to explaining patterns in species diversity.
  4. The effect of predation did not differ between the mesohabitats with different stability. However, we found higher environmental control in spring and a stronger effect of predators in autumn, which suggests that different mechanisms influence fen assemblages in different seasons.
  5. Our study provides a new robust approach how to test the effect of predation on natural macroinvertebrate assemblages. The importance of predation was lower than expected in equilibrium assemblages but it may vary in time.
  相似文献   

15.
Human activities have reorganized the earth''s biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from −0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.  相似文献   

16.
17.
    
The assembly of real-world ecological communities in human-modified landscapes is influenced by a complex interplay of spatial, temporal, environmental and invasion gradients. However, understanding the relative importance of these drivers and their interactions in shaping functional assembly remains elusive. Our study aimed to investigate the relative influence of these drivers on the functional assembly of a stream fish metacommunity.  相似文献   

18.
    
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.  相似文献   

19.
    
Productivity, habitat heterogeneity and environmental similarity are of the most widely accepted hypotheses to explain spatial patterns of species richness and species composition similarity. Environmental factors may exhibit seasonal changes affecting species distributions. We explored possible changes in spatial patterns of bird species richness and species composition similarity. Feeding habits are likely to have a major influence in bird–environment associations and, given that food availability shows seasonal changes in temperate climates, we expect those associations to differ by trophic group (insectivores or granivores). We surveyed birds and estimated environmental variables along line‐transects covering an E‐W gradient of annual precipitation in the Pampas of Argentina during the autumn and the spring. We examined responses of bird species richness to spatial changes in habitat productivity and heterogeneity using regression analyses, and explored potential differences between seasons of those responses. Furthermore, we used Mantel tests to examine the relationship between species composition similarity and both the environmental similarity between sites and the geographic distance between sites, also assessing differences between seasons in those relationships. Richness of insectivorous birds was directly related to primary productivity in both seasons, whereas richness of seed‐eaters showed a positive association with habitat heterogeneity during the spring. Species composition similarity between assemblages was correlated with both productivity similarity and geographic proximity during the autumn and the spring, except for insectivore assemblages. Diversity within main trophic groups seemed to reflect differences in their spatial patterns as a response to changes between seasons in the spatial patterns of food resources. Our findings suggest that considering different seasons and functional groups in the analyses of diversity spatial pattern could contribute to better understand the determinants of biological diversity in temperate climates.  相似文献   

20.
Aims: The direct effects of atmospheric and climatic change factors—atmospheric[CO2], air temperature and changes in precipitation—canshape plant community composition and alter ecosystem function.It is essential to understand how these factors interact tomake better predictions about how ecosystems may respond tochange. We investigated the direct and interactive effects of[CO2], warming and altered soil moisture in open-top chambers(OTCs) enclosing a constructed old-field community to test howthese factors shape plant communities. Materials and methods: The experimental facility in Oak Ridge, TN, USA, made use of4-m diameter OTCs and rain shelters to manipulate [CO2] (ambient,ambient + 300 ppm), air temperature (ambient, ambient + 3.5°C)and soil moisture (wet, dry). The plant communities within thechambers comprised seven common old-field species, includinggrasses, forbs and legumes. We tracked foliar cover for eachspecies and calculated community richness, evenness and diversityfrom 2003 to 2005. Important findings: This work resulted in three main findings: (1) warming had species-specificeffects on foliar cover that varied through time and were alteredby soil moisture treatments; (2) [CO2] had little effect onindividual species or the community; (3) diversity, evennessand richness were influenced most by soil moisture, primarilyreflecting the response of one dominant species. We concludethat individualistic species responses to atmospheric and climaticchange can alter community composition and that plant populationsand communities should be considered as part of analyses ofterrestrial ecosystem response to climate change. However, predictionof plant community responses may be difficult given interactionsbetween factors and changes in response through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号