首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid‐based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade‐off between somatic growth and the coloration intensity of a carotenoid‐based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics.  相似文献   

2.
Aggregation Behavior in Wildtype and Transgenic Zebrafish   总被引:2,自引:0,他引:2  
Recent advances in the development and availability of genetically modified animals enable researchers to examine the effects of phenotypic characters on social behavior. In fish, shoaling behavior is known to be influenced by characteristics such as body coloration, striping pattern, body shape, and size. GloFishTM are genetically engineered zebrafish (Danio rerio) that express red fluorescent protein (RFP), resulting in on overall red coloration under the dark longitudinal stripes. The GloFish pattern is distinct from the light body coloration underlying the dark longitudinal stripes seen in wildtype zebrafish. We presented wildtype and transgenic RFP zebrafish with same‐sex shoals of both strains of fish in dichotomous choice tests. No preference for either of the shoals was shown, however, both strains showed significant preferences for swimming near shoals vs. swimming near an empty tank compartment. When presented with opposite‐sex individuals of both strains, no preference was shown by either sex of either strain. Thus, the red body coloration of transgenic zebrafish does not appear to affect choice of social partner, in either a shoaling or a potentially reproductive context.  相似文献   

3.
Morphological variations in bluegill, Lepomis macrochirus, including growth-related changes, sexual dimorphism and morphological differences between populations in different habitats, were examined in samples from three reservoirs in Kagawa, Japan. Body measurements demonstrated frequent growth-related proportional changes, particularly in body depth, body width, caudal peduncle length and head length, which all showed relative increases, whereas first dorsal fin length, caudal fin length and orbital diameter became relatively shorter. Body weight increased relatively with growth, with relative growth coefficients of 3.339–3.454 for regressions between total length and body weight. Such body weight increases were likely due to the relative increases in body depth and width, and caudal peduncle depth. Although counts of fin spines, fin rays and gill rakers did not change with growth, those of scales tended to increase. Males were significantly larger than females in body depth, caudal peduncle length, head length and body weight. Sexual dimorphism was also apparent in body coloration during the breeding season. In addition, a number of morphological differences were observed between individuals from different habitats.  相似文献   

4.
黄颡鱼的两性异形和雌性繁殖特征   总被引:13,自引:0,他引:13  
测定了黄颡鱼成体的体长、头长、头宽、头高、吻长、眼径、眼间距、眼后头长、体高、尾柄高、背鳍基前距、背鳍基长、尾柄长、腹鳍基前距、背鳍脂鳍间距、腹鳍臀鳍间距、尾鳍长、体重、去内脏体重等形态指标以及雌体的怀卵数量。雌性成体的体长显著小于雄性成体。其它局部特征皆与体长呈正相关,回归剩余值的t—检验表明,雌性成体的眼径、头高、体高、腹鳍基前距、体重显著大于雄性成体,其它局部形态特征不存在显著的两性差异。黄颡鱼雌体通过个体大小的增加和腹部形态的改变增加腹腔容量,增加繁殖输出。  相似文献   

5.
We examined the effect of temperature during the early development on the phenotypic plasticity of Danio rerio. The effect of temperature was examined during two different early developmental periods of 280°d (the product of days × temperature) each, 28‐308°d or 280‐560°d, by subjecting the experimental populations to three different water temperatures (22°C, 28°C, and 32°C). Before and after the end of the 280°d period of the different thermal exposure, all populations were cultured in standard temperature (28°C). Five to 10 months after exposure to the different thermal regimes, the body shape of the adults was analyzed by geometric morphometrics. In both ontogenetic windows and experimental repetitions, the results showed that developmental temperature and sex significantly affected the body shape of adult zebrafish. Thermally induced shape variation discriminated the fish that developed at 22°C from those developed at 28°C–32°C. In the early developmental period (DP1, 28–308°d postfertilization), dorsal, anal, and caudal fin structures differed between the animals that developed at 22°C and 28°C–32°C. In the later developmental period (DP2, 280–560°d postfertilization), caudal, anal, pectoral, and pelvic fins, as well as the gill cover and lower jaw, were affected when animals developed at different temperatures. These results show that thermal history during a short period of embryonic and larval life affects the body form of adult zebrafish with potentially functional consequences. Based on previous data on the effects of temperature on fish development, we suggest thermally induced muscle and bone remodelling as possible mechanism underlying the observed plasticity. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta) was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate. Skin and fin coloration quantified with digital photography and image analysis indicated strong plastic effects in response to substrate color; individuals reared on dark substrate had both darker melanin-based skin color and carotenoid-based fin colors than other members of their population reared on light substrate. Slopes of skin and fin color reaction norms were parallel between environments, which is not consistent with heritable population-level plasticity to substrate color. Similarly, we observed weak differences in population-level color within an environment, again suggesting little genetic control on the intensity of skin and fin colors. Taken as whole, our results are consistent with the hypothesis that phenotypic plasticity may have facilitated the success of brown trout invasions and suggests that plasticity is the most likely explanation for the variation in color intensity observed among these populations in nature.  相似文献   

7.
棒花鱼形态特征的两性异形和雌性个体生育力   总被引:6,自引:0,他引:6  
测定了棒花鱼(Abbottina rivularis)繁殖期形态特征包括体长、头长、头宽、头高、眼间距、鼻间距、背鳍基长、胸鳍长、胸鳍腹鳍间距、尾柄长、尾鳍长和体重的两性异形和雌性个体生育力。结果表明,雄性个体的数量显著多于雌性个体,雄性个体的体长显著大于雌性个体。特定体长的雌性个体的胸鳍腹鳍间距显著大于雄性个体,头长、头宽、头高、眼间距、鼻间距、背鳍基长、胸鳍长、尾柄长和尾鳍长显著小于雄性个体,雌雄两性体重不存在显著差异。棒花鱼的怀卵数量与体长和体重回归关系显著。偏相关分析显示,当控制第三者恒定时,怀卵数量与体长和体重呈正相关但不显著。棒花鱼存在个体大小和其他局部特征显著的两性异形,雌性个体主要通过腹腔容积的增加提高个体生育力。棒花鱼形态特征的两性异形是性选择和生育力选择共同作用的结果。  相似文献   

8.
Females often choose to associate with males that have exaggerated traits. In fishes, this may reflect an overall preference for larger size in a potential mate. Female zebrafish (Danio rerio) prefer males with larger bodies but not longer fins. The availability of mutant and transgenic strains of zebrafish make this a unique model system in which to study the role of phenotypic variation in social and sexual behavior. We used mutant strains of zebrafish with truncated (short fin) and exaggerated (long fin) fins to further examine female preferences for fin length in dichotomous association tests. Wild type females showed no preferences between wild type males and short fin mutant males or between wild type males and long fin mutant males. short fin females also showed no preference for short fin males or wild type males while long fin females preferred to associate with long fin males over wild type males. These results suggest that the single gene long fin mutation that results in altered fin morphological may also be involved in a related female association preference.  相似文献   

9.
The caudal fin represents a fundamental design feature of fishes and plays an important role in locomotor dynamics in fishes. The shape of caudal is an important parameter in traditional systematics. However, little is known about genes involved in the development of different forms of caudal fins. This study was conducted to identify and map quantitative trait loci (QTL) affecting the length of caudal fin and the ratio between tail length and standard body length in Asian seabass (Lates calcarifer). One F1 family containing 380 offspring was generated by crossing two unrelated individuals. One hundred and seventeen microsatellites almost evenly distributed along the whole genome were genotyped. Length of caudal fin at 90 days post-hatch was measured. QTL analysis detected six significant (genome-wide significant) and two suggestive (linkage-group-wide significant) QTL on seven linkage groups. The six significant QTL explained 5.5–16.6% of the phenotypic variance, suggesting these traits were controlled by multiple genes. Comparative genomics analysis identified several potential candidate genes for the length of caudal fin. The QTL for the length of caudal fin detected for the first time in marine fish may provide a starting point for the future identification of genes involved in the development of different forms of caudal fins in fishes.  相似文献   

10.
The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski 2010); however, little is known about its molecular regulation. We have studied fibroblast growth factor (FGF) pathway molecules during barbel regeneration, comparing this system to a well‐known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1‐4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature‐dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage‐specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn‐fgfr1:EGFP)pd1 completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn‐fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn‐fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al. 2011), we observed robust formation of calretinin‐positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin versus maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm versus barbel ectoderm).  相似文献   

11.
Alternative mating behaviour, personality traits and morphological characters are predicted to be correlated. Bolder, larger and more colourful males are expected to preferentially court females, while shy, small and drab‐coloured individuals are predicted to sneak copulations. We used males of Endler's guppy, Poecilia wingei, to test this association over a long temporal period (hence including ontogenetic changes) and under two social environments (male‐biased and female‐biased). We found that personality traits (exploration, boldness, activity) of P. wingei males were highly repeatable across long time spans, but they were not correlated (formed no behavioural syndrome). Male age and social environment had no effect on any personality trait, despite their effects on alternative mating behaviour. Young males with higher activity levels were more likely to attempt sneaking. In older fish, there was an association between orange coloration, courtship and boldness, but this was not observed in young males. Our results suggest that alternative mating behaviour is more flexible than personality traits and is independent of them. Non‐colour‐based morphological traits (gonopodium length, body length, caudal straps length, dorsal fin length) were not correlated with any particular mating behaviour.  相似文献   

12.
A new cave‐dwelling loach of the genus Triplophysa, T. xichouensis, is described from an outlet of a subterranean river in Xisa Town, Xichou County, Yunnan Province, China. It can be distinguished from its congeners by the following characters: dorsal‐fin rays iii, 8; anal‐fin rays ii, 6; pectoral‐fin rays i, 9 or 10; pelvic‐fin rays i, 5 or 6; branched caudal‐fin rays 16(8+8); eyes highly degenerated to a very tiny black dot; dorsal‐fin origin closer to snout tip than to caudal‐fin base and anterior to vertical line of pelvic‐fin origin; pectoral fin length about two‐thirds the distance between pectoral‐fin origin to pelvic‐fin origin; caudal peduncle slender, its length about three times its depth; caudal fin emarginate; body smooth and scaleless; lateral line complete and straight; anterior chamber of air bladder wrapped in dumbbell‐shaped bony capsule and the posterior one well developed, long, oval; intestine short, bending in zigzag shape behind stomach. A key for the cave‐dwelling species of Triplophysa is provided. urn:lsid:zoobank.org:pub:9162FFB1‐7911‐47C3‐AE50‐6A00E9590327  相似文献   

13.
Ectothermic animals rely on external heat sources and behavioral thermoregulation to control body temperature, and are characterized by possessing physiological and behavioural traits which are temperature dependent. It has therefore been suggested that constraints on the range of body temperatures available to individuals imposed by phenotypic properties, such as coloration, may translate into differential fitness and selection against thermally inferior phenotypes. In this paper, I report an association between thermal preferences and thermal capacity (the ability to warm up when insolated) across different genetically coded color morphs of the pygmy grasshopper Tetrix subulata. Data on behavioral thermoregulation of individuals in a laboratory thermal gradient revealed a preference for higher body temperatures in females than in males, and significant variation among colour morphs in preferred body temperatures in females, but not in males. The variation in females was in perfect accordance with estimates of morph-specific differences in thermal capacity. Thus, dark morphs not only attain higher temperatures when exposed to augmented illumination, but also prefer higher body temperatures, compared to paler morphs. This intra-population divergence probably reflects an underlying variation among colour morphs in temperature optima, and is consistent with the notion that coloration, behaviour and physiology evolve in concert.  相似文献   

14.
The presence of breeding tubercles (BTs) on the pectoral fins has been investigated as a typical male secondary sexual characteristic (SSC) that distinguish males from females in adult zebrafish. Nonetheless, the earliest occurrence of these tubercles and its association with puberty onset and body growth remain unclear. In this study, using morphological, histological and statistical analyses, the authors examined the first appearance of BTs and puberty onset in male zebrafish, with particular emphasis on the potential impact of body growth on them. The results of this study revealed that BTs distributed along the first five branched pectoral fin rays were the earliest manifestation of male SSCs, which is significantly strongly correlated with body weight (R2 = 0.9609, P < 0.001), and could be used as a “gold standard” for the earliest sex distinction (<0.1 g in weight). Using the first appearance of BTs (<0.20 mm2) as a metric, the authors established that male puberty commenced at a body weight of c. 0.056 ± 0.015 g or a standard length of 10.99 ± 1.051 mm (mean ± S.D. ). In this study, the authors thus established a simple method that can be used to sex live zebrafish at the pubertal stage and provides the first evidence for the relationship of BTs and male puberty initiation with body growth. These findings will accordingly lay a foundation for exploring mechanisms of the SSCs and male puberty onset in zebrafish and other teleost fish.  相似文献   

15.
Antipredatory displays that incorporate hidden contrasting coloration are found in a variety of different animals. These displays are seen in organisms that have drab coloration at rest, but when disturbed reveal conspicuous coloration. Examples include the bright abdomens of mountain katydids and the colorful underwings of hawk moths. Such hidden displays can function as secondary defenses, enabling evasion of a pursuant predator. To begin to understand why some species have these displays while others do not, we conducted phylogenetic comparative analyses to investigate factors associated with the evolution of hidden contrasting coloration in leaf‐footed bugs. First, we investigated whether hidden contrasting coloration was associated with body size because these displays are considered to be more effective in larger organisms. We then investigated whether hidden contrasting coloration was associated with an alternative antipredatory defense, in this case rapid autotomy. We found that leaf‐footed bugs with hidden contrasting coloration tended to autotomize more slowly, but this result was not statistically significant. We also found that the presence of a body size association was dependent upon the form of the hidden color display. Leaf‐footed bugs that reveal red/orange coloration were the same size, on average, as species without a hidden color display. However, species that reveal white patches on a black background were significantly larger than species without a hidden color display. These results highlight the diversity of forms that hidden contrasting color signal can take, upon which selection may act differently.  相似文献   

16.
Coastal marine Gasterosteus aculeatus were captured from seven locations along the Pacific coast of North America, ranging across 21·8° latitude to test Jordan's rule, i.e. that vertebral number should increase with increasing latitude for related populations of fish. Vertebral number significantly increased with increasing latitude for both total and caudal vertebral number. Increasing length with latitude (sensu Bergmann's rule) was also supported, but the predictions for Jordan's rule held when controlling for standard length. Pleomerism was weakly evidenced. Gasterosteus aculeatus exhibited sexual dimorphism for Jordan's rule, with both sexes having more vertebrae at higher latitudes, but only males showing a positive association between latitude and the ratio of caudal to abdominal vertebrae. The number of dorsal‐ and anal‐fin rays and basals increased with increasing latitude, while pectoral‐fin ray number decreased. This study reinforces the association between phenotypic variation and environmental variation in marine populations of G. aculeatus.  相似文献   

17.
Multivariate and machine‐learning methods were used to develop field identification techniques for two species of cryptic blacktip shark. From 112 specimens, precaudal vertebrae (PCV) counts and molecular analysis identified 95 Australian blacktip sharks Carcharhinus tilstoni and 17 common blacktip sharks Carcharhinus limbatus. Molecular analysis also revealed 27 of the 112 were C. tilstoni × C. limbatus hybrids, of which 23 had C. tilstoni PCV counts and four had C. limbatus PCV counts. In the absence of further information about hybrid phenotypes, hybrids were assigned as either C. limbatus or C. tilstoni based on PCV counts. Discriminant analysis achieved 80% successful identification, but machine‐learning models were better, achieving 100% successful identification, using six key measurements (fork length, caudal‐fin peduncle height, interdorsal space, second dorsal‐fin height, pelvic‐fin length and pelvic‐fin midpoint to first dorsal‐fin insertion). Furthermore, pelvic‐fin markings could be used for identification: C. limbatus has a distinct black mark >3% of the total pelvic‐fin area, while C. tilstoni has markings with diffuse edges, or has smaller or no markings. Machine learning and pelvic‐fin marking identification methods were field tested achieving 87 and 90% successful identification, respectively. With further refinement, the techniques developed here will form an important part of a multi‐faceted approach to identification of C. tilstoni and C. limbatus and have a clear management and conservation application to these commercially important sharks. The methods developed here are broadly applicable and can be used to resolve species identities in many fisheries where cryptic species exist.  相似文献   

18.
测定了乐山棒花鱼(Abbottina kiatingensis)繁殖期形态特征包括体长、头长、头宽、头高、吻长、眼后头长、眼径、眼间距、体高、尾柄长、尾柄高、尾鳍长、背鳍基前距、背鳍基长、腹鳍基前距、腹臀间距、体重和去内脏体重的两性异形和雌性个体生育力。繁殖期雄性个体的数量显著多于雌性个体,雌雄两性个体的体长差异不显著。特定体长的雌性个体的头长、头宽、头高、吻长、眼后头长、尾柄高、背鳍基前距、背鳍基长和去内脏体重显著小于雄性个体,其余指标不存在明显的差异。回归分析表明,乐山棒花鱼的怀卵数量与体长和体重回归关系显著,雌性通过个体大小(体长和体重)的增加来提高个体生育力。  相似文献   

19.

Background

The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration.

Methodology/Principal Findings

We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation.

Conclusions/Significance

We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.  相似文献   

20.
Phenotypic plasticity can contribute to the proliferation and invasion success of nonindigenous species by promoting phenotypic changes that increase fitness, facilitate range expansion and improve survival. In this study, differences in phenotypic plasticity were investigated using young‐of‐year pumpkinseed sunfish from colonies established with lentic and lotic populations originating in Canada (native) and Spain (non‐native). Individuals were subjected to static and flowing water treatments for 80 days. Inter‐ and intra‐population differences were tested using ancova and discriminant function analysis, and differences in phenotypic plasticity were tested through a manova of discriminant function scores. Differences between Iberian and North American populations were observed in dorsal fin length, pectoral fin position and caudal peduncle length. Phenotypic plasticity had less influence on morphology than genetic factors, regardless of population origin. Contrary to predictions, Iberian pumpkinseed exhibited lower levels of phenotypic plasticity than native populations, suggesting that canalization may have occurred in the non‐native populations during the processes of introduction and range expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号