首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two independent domestication events in the genus Oryza that led to African and Asian rice offer an extremely useful system for studying the genetic basis of parallel evolution. This system is also characterized by parallel de‐domestication events, with two genetically distinct weedy rice biotypes in the US derived from the Asian domesticate. One important trait that has been altered by rice domestication and de‐domestication is hull colour. The wild progenitors of the two cultivated rice species have predominantly black‐coloured hulls, as does one of the two U.S. weed biotypes; both cultivated species and one of the US weedy biotypes are characterized by straw‐coloured hulls. Using Black hull 4 (Bh4) as a hull colour candidate gene, we examined DNA sequence variation at this locus to study the parallel evolution of hull colour variation in the domesticated and weedy rice system. We find that independent Bh4‐coding mutations have arisen in African and Asian rice that are correlated with the straw hull phenotype, suggesting that the same gene is responsible for parallel trait evolution. For the U.S. weeds, Bh4 haplotype sequences support current hypotheses on the phylogenetic relationship between the two biotypes and domesticated Asian rice; straw hull weeds are most similar to indica crops, and black hull weeds are most similar to aus crops. Tests for selection indicate that Asian crops and straw hull weeds deviate from neutrality at this gene, suggesting possible selection on Bh4 during both rice domestication and de‐domestication.  相似文献   

2.
Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild‐to‐weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed‐shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations.  相似文献   

3.
Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the ‘agricultural weed syndrome’, making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed‐crop pairs, but are not shared among all weed‐crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms.  相似文献   

4.
Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re‐acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms.  相似文献   

5.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

6.
Conspecific weeds that permanently infest worldwide agroecosystems are evolved from their crop species. These weeds cause substantial problems for crop production by competing for resources in agricultural fields. Weedy rice represents such a conspecific weed infesting rice ecosystems, and causing tremendous rice yield losses owing to its strong competitiveness and abundant genetic diversity, likely resulted from its complex origins. Here, we report the use of chloroplast DNA (cpDNA) fingerprints to determine whether weedy rice is evolved from its wild (exo‐feral) or cultivated (endo‐feral) rice progenitor as the maternal donor in recent hybridization events. In addition, we also applied nuclear simple sequence repeat (SSR) markers to confirm the exo‐feral or endo‐feral origins of weedy rice accessions determined by the cpDNA fingerprints. We found that the studied weedy rice accessions evolved either from their wild or cultivated rice progenitor, as the maternal donor, based on the cpDNA network and structure analyses. Combined analyses of cpDNA and nuclear SSR markers indicated that a much greater proportion of weedy rice accessions had the endo‐feral origin. In addition, results from the genetic structure of nuclear SSR markers indicated that weedy rice accessions from the endo‐feral pathway are distinctly associated with either indica or japonica rice cultivars, suggesting their complex origins through crop–weed introgression. The complex pathways of origin and evolution could greatly promote genetic diversity of weedy rice. Therefore, innovative methods should be developed for effective weedy rice control.  相似文献   

7.
Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population‐selective or ‐adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.  相似文献   

8.
Weedy forms of crop species infest agricultural fields worldwide and are a leading cause of crop losses, yet little is known about how these weeds evolve. Red rice (Oryza sativa), a major weed of cultivated rice fields in the US, is recognized by the dark‐pigmented grain that gives it its common name. Studies using neutral molecular markers have indicated a close relationship between US red rice and domesticated rice, suggesting that the weed may have originated through reversion of domesticated rice to a feral form. We have tested this reversion hypothesis by examining molecular variation at Rc, the regulatory gene responsible for grain pigmentation differences between domesticated and wild rice. Loss‐of‐function mutations at Rc account for the absence of proanthocyanidin pigments in cultivated rice grains, and the major rc domestication allele has been shown to be capable of spontaneous reversion to a functional form through additional mutations at the Rc locus. Using a diverse sample of 156 weedy, domesticated and wild Oryzas, we analysed DNA sequence variation at Rc and its surrounding 4 Mb genomic region. We find that reversion of domestication alleles does not account for the pigmented grains of weed accessions; moreover, we find that haplotypes characterizing the weed are either absent or very rare in cultivated rice. Sequences from genomic regions flanking Rc are consistent with a genomic footprint of the rc selective sweep in cultivated rice, and they are compatible with a close relationship of red rice to Asian Oryzas that have never been cultivated in the US.  相似文献   

9.
Examining the targets of selection in crop species and their wild and weedy relatives sheds light on the evolutionary processes underlying differentiation of cultivars from progenitor lineages. On one hand, human‐mediated directional selection in crops favours traits associated with the streamlining of controllable and predictable monoculture practices alongside selection for desired trait values. On the other hand, natural selection in wild and especially weedy relatives presumably favours trait values that increase the probability of escaping eradication. Gene flow between crops and wild species may also counter human‐mediated selection, promoting the evolution and persistence of weedy forms. In this issue, two studies from a group of collaborators examine diversity and divergence patterns of genes underlying two traits associated with red rice (Oryza sp.), the conspecific relative of cultivated rice (Oryza sativa) that is a non‐native weed (see Fig. 1 ). In the first study by Gross et al. (2010) , genetic variation in the major gene underlying the hallmark red pigmentation characterizing most weedy rice (Rc) is found to have a pattern consistent with non‐reversion from U.S. cultivated rice (i.e. the cultivar did not ‘go feral’). This suggests that U.S. weedy rice is not an escaped lineage derived from U.S. cultivated rice populations; weedy rice likely differentiated prior to the selective sweep occurred in this gene within cultivated rice populations. Using the major seed shattering locus sh4 gene and the neighbouring genomic region, Thurber et al. (2010) track the molecular evolutionary history of the high shattering phenotype, a trait contributing dramatically to the success of crop selection in cultivated rice as well as the persistence and expansion of weedy red rice. In this study, the shared fixation of a sh4 mutation in both cultivated rice and weedy rice indicates that weedy rice arose subsequent to the strong selective sweep leading to significant reduction in seed shattering in cultivated rice.
Figure 1 Open in figure viewer PowerPoint A weedy, brown hulled red rice individual with long awns surrounded by a field of cultivated rice (photo by A. Lawton‐Rauh).  相似文献   

10.
Weedy rice is a representative of the extensive group of feral weeds that derive from crops, but has returned to the lifestyle of a wild species. These weeds develop either from a hybridization of crops with wild relatives (exoferality), or by mutation of crops to weedy forms (endoferality). Due to the close relation of weed and crop, the methods for weed‐targeted containment are limited to date. A deeper understanding of the development of such weeds might help to design more efficient and sustainable approaches for weed management. Weedy rice poses a serious threat to rice yields worldwide. It is widely accepted that weedy rice has originated independently in different regions all over the world. However, details of its evolution have remained elusive. In the current study, we investigated the history of weedy rice in northern Italy, the most important rice‐growing area in Europe. Our approach was to analyze genes related to weedy traits (SD1, sh4, Rc) in weedy rice accessions compared to cultivars, and to integrate these results with phenotypic and physiological data, as well as historical information about rice farming in Italy. We arrive at a working model for the timeline of evolution of weedy rice in Italy indicating that both exoferality and endoferality acted as forces driving the development of the diverse weedy rice populations found in the region today. Models of weed evolution can help to predict the direction which weed development might take and to develop new, sustainable methods to control feral weeds.  相似文献   

11.
The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed‐shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ~26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering.  相似文献   

12.
Rice is often found as various weedy forms in temperate or newly cultivated rice growing regions throughout the world. The emergence of these forms in the absence of true wild rice remains unclear. A genetic analysis of domestication-related traits (weed syndrome) has been conducted to better understand the appearance of these plants in rice fields. A doubled haploid (DH) population was derived from a cross between a japonica variety and a weedy plant collected in Camargue (France) to set up a genetic linkage map consisting of 68 SSR and 31 AFLP loci. Five qualitative traits related to pigmentation of different organs and 15 developmental and morphological quantitative traits were scored for genes and QTLs mapping. Despite a good reactivity in anther culture and a high fertility of the DH lines, segregation distortions were observed on chromosomal segments bearing gametophytic and sterility genes and corresponded to various QTLs evidenced in indica×japonica distant crosses. Mapping of the coloration genes was found to be in agreement with the presence of several genes previously identified and according to the genetic model governing the synthesis and distribution of anthocyan pigment in the plant. In addition, the main specific traits of weedy forms revealed the same genes/QTLs as progeny derived from a cross between Oryza sativa and its wild progenitor O. rufipogon. A large variation for most characters was found in the DH population, including transgressive variation. Significant correlations were observed between morphology and traits related to weeds and corresponded to a distinct colocalization of most of the QTLs on a limited number of chromosomal regions. The significance of these results on the origin of weedy forms and the de-domestication process is discussed. Received: 25 February 2000 / Accepted: 14 April 2000  相似文献   

13.

Cowpea (Vigna unguiculata (L.)) is an important crop for food security in Senegal; therefore, understanding the genetic diversity of local germplasm is relevant for crop improvement and genetic maintenance in the era of climate change. For this purpose, 15 microsatellite markers were used to estimate the genetic diversity of Senegalese cowpea germplasm, including 671 accessions grown in eight regions and 66 wild relatives and intermediate forms (weedy). For the cultivated, the main expected heterozygosity (mHe) ranged between 0.317 (Fatick) and 0.439 (South). A narrow genetic variation between accessions from the different regions was observed with genetic similarity ranging from 0.861 to 0.965 and genetic differentiation indices (Fst) between 0.018 and 0.100. The accessions from southern Senegal (Kédougou, Sédhiou, and Kolda regions) are more diverse than the others. However, the accessions from the North (Saint-Louis) are genetically different from other regions. The diversity analysis in wild relatives from Senegal, which had never been performed before, revealed that the wild/weedy forms remain more diverse than the cultivated with genetic diversity values (He) of 0.389 and 0.480, respectively. STRUCTURE software divided the Senegalese germplasm into five subpopulations. Three of them (i, ii, and iii) included only cultivated accessions from several regions, one (v) mainly from Saint-Louis, and one (iv) the wild/weedy with some cultivated accessions. Our results support the hypothesis that Vigna unguiculata var. spontanea is the wild progenitor of cowpea. The accessions from the South, the northern recession accessions, and the wild/weedy could serve as sources of new genes for the genetic improvement of cowpea in Senegal.

  相似文献   

14.
Lee S  Jia Y  Jia M  Gealy DR  Olsen KM  Caicedo AL 《PloS one》2011,6(10):e26260
The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus), which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta) found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH), suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s) required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta), not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing.  相似文献   

15.
 Weedy rice (Oryza sativa L.) is an important resource for breeding and for studying the evolution of rice. The present study was carried out to identify the genetic basis of the weedy rices distributed in various countries of the world. One hundred and fifty two strains of weedy rice collected from Bangladesh, Brazil, Bhutan, China, India, Japan, Korea, Nepal, Thailand and the USA were tested for variations in six morpho-physiological characteristics and in 14 isozyme loci. Twenty six weedy strains selected from the above materials were assayed for the Est-10 locus, six RAPD loci of the nuclear genome, and one chloroplast locus. From the results of multivariate analysis based on the morpho-physiological characteristics and the isozymes, weedy rice strains were classified into indica and japonica types, and each type was further divided into forms resembling cultivated and wild rice. Thus, four groups designated as I, II, III and IV were identified. Weedy strains of group I (indica-type similar to cultivars) were distributed mostly in temperate countries, group II (indica-type similar to wild rice) in tropical countries, group III (japonica-type similar to cultivars) in Bhutan and Korea, group IV ( japonica-type similar to wild rice) in China and Korea. In group I, classified as indica, several strains showed japonica-specific RAPD markers, while some others had japonica cytoplasm with indica-specific RAPD markers in a heterozygous state at several loci. One weedy strain belonging to group II showed a wild rice-specific allele at the Est-10 locus. However, in groups III and IV, no variation was ound either for the markers on Est-10 or for the RAPD loci tested. Judging from this study, weedy rice of group I might have originated at least partly from gene flow between indica and japonica, whereas that of group II most probably originated from gene flow between wild and cultivated indica rice. Weedy rice of group III is thought to have originated from old rice cultivars which had reverted to a weedy form, and that of group IV from gene flow between japonica cultivars and wild rice having japonica backgrounds. Received: 2 May 1996 / Accepted: 30 August 1996  相似文献   

16.
The mechanisms by which weedy rice (Oryza sativa f. spontanea) has adapted to endure low‐temperature stress in northern latitudes remain unresolved. In this study, we assessed cold tolerance of 100 rice varieties and 100 co‐occurring weedy rice populations, which were sampled across a broad range of climates in China. A parallel pattern of latitude‐dependent variation in cold tolerance was detected in cultivated rice and weedy rice. At the molecular level, differential cold tolerance was strongly correlated with relative expression levels of CBF cold response pathway genes and with methylation levels in the promoter region of OsICE1, a regulator of this pathway. Among all methylated cytosine sites of the OsICE1 promoter, levels of CHG and CHH methylation were found to be significantly correlated with cold tolerance among accessions. Furthermore, within many of the collection locales, weedy rice shared identical or near‐identical OsICE1 methylation patterns with co‐occurring cultivated rice. These findings provide new insights on the possible roles that methylation variation in the OsICE1 promoter may play in cold tolerance, and they suggest that weedy rice can rapidly acquire cold tolerance via methylation patterns that are shared with co‐occurring rice cultivars.  相似文献   

17.

Background  

Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution.  相似文献   

18.
通过分析籼稻93-11和粳稻培矮64S的叶绿体全基因组,优化和构建了籼粳分化的叶绿体分子标记ORF100和ORF29-TrnCGCA的多重PCR。应用这个多重PCR对200余份世界各地杂草稻和其它水稻材料进行分析。结果表明:杂草稻中有明显的叶绿体籼粳分化,表现出明显的地域性,且与传统的中国栽培稻的南籼北粳能较好的对应。推测粳型杂草稻可能是栽培稻突变或粳型水稻(作母本)与其它类型水稻材料杂交而形成的。  相似文献   

19.
Indochina Peninsula is the primary centre of diversity of rice and lies partly in the centre of origin of cultivated rice (Oryza sativa) where the wild ancestor (Oryza rufipogon) is still abundant. The wild gene pool is potentially endangered by urbanisation and the expansion of agriculture, and by introgression hybridisation with locally cultivated rice varieties. To determine genetic diversity and structure of the wild rice of the region we genotyped nearly 1000 individuals using 20 microsatellite loci. We found ecological differentiation in 48 populations, distinguishable by their life‐history traits and the country of origin. Geographical divergence was suggested by isolation of the perennial Myanmar populations from those of Cambodia, Laos and Thailand. The annual types would be most likely to have lost genetic variation because of genetic drift and inbreeding. The growing of cultivated and wild rice together, however, gives ample opportunities for hybridisation, which already shows signs of genetic mixing, and will ultimately lead to replacement of the original wild rice gene pool. For conservation we suggest that wild rice should be conserved ex situ in order to prevent introgression from cultivated rice, along with in situ conservation in individual countries for the recurrent evolutionary process through local adaptation, but with sufficient isolation from cultivated rice fields to preserve genetic integrity of the wild populations.  相似文献   

20.
Cao Q  Lu BR  Xia H  Rong J  Sala F  Spada A  Grassi F 《Annals of botany》2006,98(6):1241-1252
BACKGROUND AND AIMS: Weedy rice (Oryza sativa f. spontanea) is one of the most notorious weeds occurring in rice-planting areas worldwide. The objectives of this study are to determine the genetic diversity and differentiation of weedy rice populations from Liaoning Province in North-eastern China and to explore the possible origin of these weedy populations by comparing their genetic relationships with rice varieties (O. sativa) and wild rice (O. rufipogon) from different sources. METHODS: Simple sequence repeat (SSR) markers were used to estimate the genetic diversity of 30 weedy rice populations from Liaoning, each containing about 30 individuals, selected rice varieties and wild O. rufipogon. Genetic differentiation and the relationships of weedy rice populations were analysed using cluster analysis (UPGMA) and principle component analysis (PCA). KEY RESULTS: The overall genetic diversity of weedy rice populations from Liaoning was relatively high (H(e) = 0.313, I = 0.572), with about 35 % of the genetic variation found among regions. The Liaoning weedy rice populations were closely related to rice varieties from Liaoning and japonica varieties from other regions but distantly related to indica rice varieties and wild O. rufipogon. CONCLUSIONS: Weedy rice populations from Liaoning are considerably variable genetically and most probably originated from Liaoning rice varieties by mutation and intervarietal hybrids. Recent changes in farming practices and cultivation methods along with less weed management may have promoted the re-emergence and divergence of weedy rice in North-eastern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号