首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Diversity in flower size and degree of exsertion of anthers and stigma from the corolla in the California species of Trichostema appear to be correlated with breeding system and pollinator type (bee vs. bird). Autogamous (self-pollinating) species unlike xenogamous (cross-pollinating) species lack spatially separate anthers and stigma and nototribic pollination. The outcrossing species have significantly larger flowers, significantly larger nectar volumes and significantly higher pollen-ovule ratios than do selfing species. Because autogamous species are less reliant on flower visitors to facilitate pollination, there may be relaxed selection for large nectar producing flowers. Pollen-ovule ratios are correlated with breeding system and reflect the efficiency of pollen transport. Data on floral parameters suggest xenogamous species expend more energy per floral unit and are less efficient seed producers than closely related autogamous species.  相似文献   

2.
Floral visitor assemblages within plant populations are usually composed of different visitors, and the relative abundance of these visitors also varies. Therefore, identifying the relative strength of these floral visitors driving floral evolution within the population is an important step in predicting the evolutionary trajectory of floral traits. Using supplemental hand pollination and nectar-robbing exclusion treatments, we experimentally identified the relative strengths of legitimate pollinators (that visit flowers through the corolla tube entrance) and nectar robbers (that visit flowers by biting a hole in the corolla tube or using an existing hole) driving floral evolution within the Primula secundiflora population. We also estimated legitimate pollinator- and nectar robber-mediated selection separately for pin and thrum flowers. Both legitimate pollinators and nectar robbers mediated selection on pollination efficiency traits in P. secundiflora population. Legitimate pollinators mediated selection for wider corolla tubes, whereas nectar robbers mediated selection for longer corolla tubes. In addition, nectar robber-mediated selection on corolla tube length marginally varied between the pin and thrum flowers. Nectar robber mediated selection for longer corolla tube length in the pin flowers not in the thrum flowers. These results indicate that legitimate pollinators and nectar robbers within a population can drive differential evolutionary trajectories of floral traits.  相似文献   

3.
Geographic variation in the reproductive traits of animal‐pollinated plants can be shaped by spatially variable selection imposed by differences in the local pollination environment. We investigated this process in Babiana ringens (Iridaceae), an enigmatic species from the Western Cape region of South Africa. B. ringens has evolved a specialized perch facilitating cross‐pollination by sunbirds and displays striking geographic variation in perch size and floral traits. Here, we investigate whether this variation can be explained by geographic differences in the pollinator communities. We measured floral and inflorescence traits, and abiotic variables (N, P, C, and rainfall) and made observations of sunbirds in populations spanning the range of B. ringens. In each population, we recorded sunbird species identity and measured visitation rates, interfloral pollen transfer, and whether the seed set of flowers was pollen limited. To evaluate whether competition from co‐occurring sunbird‐pollinated species might reduce visitation, we quantified nectar rewards in B. ringens and of other co‐flowering bird‐pollinated species in local communities in which populations occurred. Variation in abiotic variables was not associated with geographical variation of traits in B. ringens. Malachite sunbirds were the dominant visitor (97% of visits) and populations with larger‐sized traits exhibited higher visitation rates, more between‐flower pollen transfer and set more seed. No sunbirds were observed in four populations, all with smaller‐sized traits. Sunbird visitation to B. ringens was not associated with local sunbird activity in communities, but sunbird visitation was negatively associated with the amount of B. ringens sugar relative to the availability of alternative nectar sources. Our study provides evidence that B. ringens populations with larger floral traits are visited more frequently by sunbirds, and we propose that visitation rates to B. ringens may be influenced, in part, by competition with other sunbird‐pollinated species.  相似文献   

4.
Distinct floral pollination syndromes have emerged multiple times during the diversification of flowering plants. For example, in western North America, a hummingbird pollination syndrome has evolved more than 100 times, generally from within insect-pollinated lineages. The hummingbird syndrome is characterized by a suite of floral traits that attracts and facilitates pollen movement by hummingbirds, while at the same time discourages bee visitation. These floral traits generally include large nectar volume, red flower colour, elongated and narrow corolla tubes and reproductive organs that are exerted from the corolla. A handful of studies have examined the genetic architecture of hummingbird pollination syndrome evolution. These studies find that mutations of relatively large effect often explain increased nectar volume and transition to red flower colour. In addition, they suggest that adaptive suites of floral traits may often exhibit a high degree of genetic linkage, which could facilitate their fixation during pollination syndrome evolution. Here, we explore these emerging generalities by investigating the genetic basis of floral pollination syndrome divergence between two related Penstemon species with different pollination syndromes—bee-pollinated P. neomexicanus and closely related hummingbird-pollinated P. barbatus. In an F2 mapping population derived from a cross between these two species, we characterized the effect size of genetic loci underlying floral trait divergence associated with the transition to bird pollination, as well as correlation structure of floral trait variation. We find the effect sizes of quantitative trait loci for adaptive floral traits are in line with patterns observed in previous studies, and find strong evidence that suites of floral traits are genetically linked. This linkage may be due to genetic proximity or pleiotropic effects of single causative loci. Interestingly, our data suggest that the evolution of floral traits critical for hummingbird pollination was not constrained by negative pleiotropy at loci that show co-localization for multiple traits.  相似文献   

5.
One of the most common trends in plant evolution, loss of self‐incompatibility and ensuing increases in selfing, is generally assumed to be associated with a suite of phenotypic changes, notably a reduction of floral size, termed the selfing syndrome. We investigate whether floral morphological traits indeed decrease in a deterministic fashion after losses of self‐incompatibility, as traditionally expected, using a phylogeny of 124 primrose species containing nine independent transitions from heterostyly (heteromorphic incompatibility) to homostyly (monomorphic self‐compatibility), a classic system for evolution of selfing. We find similar overall variability of homostylous and heterostylous species, except for diminished herkogamy in homostyles. Bayesian mixed models demonstrate differences between homostylous and heterostylous species in all traits, but net effects across species are small (except herkogamy) and directionality differs among traits. Strongly drift‐like evolutionary trajectories of corolla tube length and corolla diameter inferred by Ornstein–Uhlenbeck models contrast with expected deterministic trajectories toward small floral size. Lineage‐specific population genetic effects associated with evolution of selfing may explain that reductions of floral size represent one of several possible outcomes of floral evolution after loss of heterostyly in primroses. Contrary to the traditional paradigm, selfing syndromes may, but do not necessarily evolve in response to increased selfing.  相似文献   

6.
There is discussion over whether pollen limitation exerts selection on floral traits to increase floral display or selects for traits that promote autonomous self‐fertilization. Some studies have indicated that pollen limitation does not mediate selection on traits associated with either pollinator attraction or self‐fertilization. Primula tibetica is an inconspicuous cross‐fertilized plant that may suffer from pollen limitation. We conducted a selection analysis on P. tibetica to investigate whether pollen limitation results in selection for an increased floral display in case the evolution of autonomous self‐fertilization has been difficult for this plant. The self‐ and intra‐morph incompatibility features, the capacity for autonomous self‐fertilization, and the magnitude of pollen limitation were examined through hand‐pollination experiments. In 2016, we applied selection analysis on the flowering time, corolla width, stalk height, flower tube length, and flower number in P. tibetica by tagging 76 open‐pollinated plants and 37 hand‐pollinated plants in the field. Our results demonstrated that P. tibetica was strictly self‐ and intra‐morph incompatible. Moreover, the study population underwent severe pollen limitation during the 2016 flowering season. The selection gradients were found to be significantly positive for flowering time, flower number, and corolla width, and marginally significant for the stalk height. Pollinator‐mediated selection was found to be significant on the flower number and corolla width, and marginally significant on stalk height. Our results indicate that the increased floral display may be a vital strategy for small distylous species that have faced difficulty in evolving autonomous self‐fertilization.  相似文献   

7.
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.  相似文献   

8.
Taxonomically related species can differ in a number of reproductive traits, which may translate into a differential mating system and pollination success. Here we compare two hermaphroditic insect-pollinated Daphne species (D. rodriguezii and D. gnidium) which differ in distribution (island endemic vs. mediterranean) and floral traits (long- vs. short-tube corolla). We investigated their mating system and pollen limitation by means of hand-pollination experiments and quantified the diversity and abundance of flower visitors by direct observations. Plant size and five reproductive traits (flower production, proportion of viable anthers, pollen production, flower tube length and tepal area) were studied to assess how they contribute to reproductive success, measured as proportion of pollen grains germinated per stigma and fruit set. Selfing was very low and pollen limitation existed in both species, though was higher in D. rodriguezii probably due to the scarcity of flower visitors. The low fruit set in both species suggests that most of the pollen grains found on stigmas are self-pollen. Pollinators appeared to favour some floral traits (specifically, flower tube length or tepal area) in both species, although flower crop in D. rodriguezii was the only reproductive trait influencing fruit set. In both species, the highest variability in reproductive traits and pollination success was within individuals. Our findings suggest that despite both species showed similar mating system, dependency on outcrossing pollen and selection of floral traits, pollen limitation was higher in D. rodriguezii, probably as a higher proportion of self-pollen arrives to its stigmas.  相似文献   

9.
  • Self‐fertilisation that is delayed until after opportunities for outcrossing have ceased has been argued to provide both the reproductive assurance benefits of selfing and the genetic advantages of outcrossing. In the Campanulaceae, presentation of pollen on stylar hairs and progressive stigma curvature have been hypothesised to facilitate delayed selfing, but experimental tests are lacking. Stigma curvature is common in Campanula, a genus largely characterised by self‐incompatibility, and therefore is unlikely to have initially evolved to promote self‐fertilisation. In derived self‐compatible species, however, stigma curvature might serve the secondary function of delayed selfing.
  • We investigated delayed selfing in Triodanis perfoliata, a self‐compatible relative of Campanula. Using floral manipulation experiments and pollen tube observations, we quantified the extent and timing of self‐pollination. Further, we hypothesised that, if stigma curvature provides the benefit of delayed selfing in Triodanis, selection should have favoured retention of self‐pollen through the loss of a stylar hair retraction mechanism.
  • Results of a stigma removal experiment indicated that autonomous selfing produces partial seed set, but only some selfing was delayed. Pollen tube observations and a flower senescence assay also supported the finding of partial delayed selfing. Scanning electron microscopy revealed that pollen‐collecting hairs retract during anthesis, which may limit the extent of delayed selfing.
  • Delayed selfing appeared to be only partially effective in T. perfoliata. The stylar hair retraction in this species would seem to contradict selection for selfing. We suggest that caution and rigour are needed in interpreting floral traits as adaptive mechanisms for delayed selfing.
  相似文献   

10.
Floral nectaries are closely associated with biotic pollination, and the nectar produced by corolla nectaries is generally enclosed in floral structures. Although some Swertia spp. (Gentianaceae), including S. bimaculata, evolved a peculiar form of corolla nectaries (known as “gland patches”) arranged in a conspicuous ring on the rotate corolla and that completely expose their nectar, little is known about the pollination of these plants. Two hypotheses were made concerning the possible effects of gland patches: visual attraction and visitor manipulation. The floral traits, mating system, and insect pollination of S. bimaculata were examined, and the pollination effects of gland patches were evaluated. A comparative study was made using Swertia kouitchensis, a species with fimbriate nectaries. Swertia bimaculata flowers were protandrous, with obvious stamen movement leading to herkogamy in the female phase and to a significant reduction in nectary–anther distance. The species is strongly entomophilous and facultatively xenogamous. The daily reward provided per flower decreased significantly after the male phase. The most effective pollinators were large dipterans, and the visiting proportion of Diptera was significantly higher in S. bimaculata than in S. kouitchensis. Most visitors performed “circling behavior” in S. bimaculata flowers. Removing or blocking the nectaries caused no reduction in visiting frequency but a significant reduction in visit duration, interrupting the circling behavior. The circling behavior was encouraged by nectar abundance and promoted pollen dispersal. Visitor species with small body size had little chance to contact the anthers or stigma, revealing a filtration effect exerted by the floral design. These results rejected the “visual attraction” hypothesis and supported the “visitor manipulation” hypothesis. The nectary whorl within a flower acted like a ring‐shaped track that urged nectar foragers to circle on the corolla, making pollination in S. bimaculata flowers more orderly and selective than that in classically generalist flowers.  相似文献   

11.

Background and Aims

Floral rewards may be associated with certain morphological floral traits and thus act as underlying factors promoting selection on these traits. This study investigates whether some traits that are under pollinator-mediated selection (flower number, stalk height, corolla diameter, corolla tube length and corolla tube width) in the Mediterranean herb E. mediohispanicum (Brassicaceae) are associated with rewards (pollen and nectar).

Methods

During 2005 the phenotypic traits and the visitation rate of the main pollinator functional groups were quantified in 720 plants belonging to eight populations in south-east Spain, and during 2006 the same phenotypic traits and the reward production were quantified in 400 additional plants from the same populations.

Key Results

A significant correlation was found between nectar production rate and corolla tube length, and between pollen production and corolla diameter. Visitation rates of large bees and butterflies were significantly higher in plants exhibiting larger flowers with longer corolla tubes.

Conclusions

The association between reward production and floral traits may be a factor underlying the pattern of visitation rate displayed by some pollinators.Key words: Erysimum, floral traits, nectar, pollen, pollinator visitation rate, reward  相似文献   

12.
Plant mating systems are driven by several pre‐pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass‐flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen‐supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass‐flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator‐mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production.  相似文献   

13.
Cross‐ and self‐fertilization in angiosperms are regulated by several factors, and a knowledge of the mechanism and time of spontaneous self‐pollination offers opportunities for a better understanding of the evolution of mating systems and floral traits. The floral biology of five species of Gentianaceae found in high‐altitude neotropical grassland is presented, with emphasis on the mechanisms that promote spontaneous self‐pollination. A presumed floral Batesian mimicry system is suggested between the rare and rewardless Zygostigma australe and Calydorea campestris, a species of Iridaceae with pollen‐flowers, pollinated by syrphids and bees. The floral morphology of the other four gentian species points to three different pollination syndromes: melittophily, phalaenophily and ornithophily. However, with the exception of the nocturnal Helia oblongifolia, flowers are nectarless and appear to exhibit non‐model deceptive mechanisms, providing similar floral cues to some sympatric rewarding species with the same syndrome. The similar mechanism of spontaneous self‐pollination in Calolisianthus pedunculatus, Calolisianthus pendulus and H. oblongifolia (Helieae) is based on the stigmatic movements towards the anthers. Selfing is promoted by movements of the style/stigma and of the corolla in Deianira nervosa and Z. australe (Chironieae), respectively. The movements of stamens, style and stigma during anthesis seem to be the most common method of spontaneous self‐pollination in angiosperms. It is suggested that the evolution of delayed spontaneous self‐pollination would be more expected in those taxa with dichogamous flowers associated with herkogamy. Such a characteristic is frequent in long‐lived flowers of certain groups of Asteridae, which comprise most documented cases of autonomous selfing. Thus, the presence of dichogamy associated with herkogamy (which supposedly evolved as a result of selection to promote both separation of male and female functions and the efficient transfer of cross pollen) may be the first step in the adaptive evolution of delayed selfing to provide reproductive assurance. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 357–368.  相似文献   

14.
  • One of the most fundamental, although controversial, questions related to the evolution of plant mating systems is the distribution of outcrossing rates. Self‐compatibility, and especially autonomous self‐pollination, can become particularly beneficial in anthropogenically degraded habitats with impoverished pollinator assemblages and increased pollen limitation.
  • In a hand‐pollination experiment with 46 meadow plants from the ?elezné hory Mts., Czech Republic, we evaluated the species' ability to adopt different mating systems. For a subset of the species, we also tested seed germination for inbreeding depression. Subsequently, we analysed relationships between the species' mating systems and 12 floral and life‐history traits.
  • We found a relatively discrete distribution of the studied species into four groups. Fully and partially self‐incompatible species formed the largest group, followed by self‐compatible non‐selfers and mixed mating species. The germination experiment showed an absence of inbreeding depression in 19 out of 22 examined species. Nectar sugar per flower, nectar sugar per shoot and dichogamy were significant associated with the mating system.
  • Spontaneous selfing ability and self‐incompatibility in species of the meadow communities had a discrete distribution, conforming to the general distribution of mating and breeding systems in angiosperms. The low frequency of spontaneous selfers and the lack of inbreeding depression at germination suggest the existence of a selection against selfing at the later ontogenetic stages. Some floral traits, such as the level of dichogamy and amount of nectar reward, may strongly impact the balance between selfing and outcrossing rates in the self‐compatible species and thus shape the evolution of mating systems.
  相似文献   

15.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

16.
A match between floral and pollinator traits, such as that between unique island plants and pollinators, is often thought to be the product of pollinator-mediated selection. I examined whether the floral morphology of an introduced hummingbird-pollinated plant, Nicotiana glauca (tree tobacco, Solanaceae), is under selection by pollinators on the California Channel Islands where it is a recent colonist. I first determined differences in floral morphology and pollinator composition between island and mainland populations of N. glauca. I found that island plants have detectably longer corollas (on average 1 mm) and are visited by hummingbird species with on average 1–2 mm longer bills than common mainland visitors. Corolla length differences were not found to be associated with site abiotic differences. Flower size does not vary consistently with season and corolla width is very consistent across sites. I tested whether island–mainland corolla length differences are the product of pollinator-mediated selection by measuring phenotypic selection and per visit effectiveness. Contrary to expectations, a longer corolla was not consistently associated with higher pollen transfer or seed count on the islands. Per visit effectiveness of longer and shorter-billed hummingbirds did differ; however, effectiveness did not depend on corolla length. Although I failed to detect expected patterns of selection for longer corollas on islands, I cannot rule out weak or past pollinator-mediated selection. It is also possible that despite the apparent match between pollinator and floral traits, island–mainland differences in corolla length are instead due to other environmental effects, selection unrelated to pollinators, or stochastic processes such as drift.  相似文献   

17.
The reproductive‐assurance hypothesis predicts that mating‐system traits will evolve towards increased autonomous self‐pollination in plant populations experiencing unreliable pollinator service. We tested this long‐standing hypothesis by assessing geographic covariation among pollinator reliability, outcrossing rates, heterozygosity and relevant floral traits across populations of Dalechampia scandens in Costa Rica. Mean outcrossing rates ranged from 0.16 to 0.49 across four populations, and covaried with the average rates of pollen arrival on stigmas, a measure of pollinator reliability. Across populations, genetically based differences in herkogamy (anther–stigma distance) were associated with variation in stigmatic pollen loads, outcrossing rates and heterozygosity. These observations are consistent with the hypothesis that, when pollinators are unreliable, floral traits promoting autonomous selfing evolve as a mechanism of reproductive assurance. Extensive covariation between floral traits and mating system among closely related populations further suggests that floral traits influencing mating systems track variation in adaptive optima generated by variation in pollinator reliability.  相似文献   

18.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

19.
  • The trait–fitness relationship influences the strength and direction of floral evolution. To fully understand and predict the evolutionary trajectories of floral traits, it is critical to disentangle the direct and indirect effects of floral traits on plant fitness in natural populations.
  • We experimentally quantified phenotypic selection on floral traits through female fitness and estimated the casual effects of nectar robbing with different nectar robbing intensities on trait–fitness relationships in both the L‐ (long‐style and short‐anther phenotype) and S‐morph (short‐style and long‐anther phenotype) flowers among Primula secundiflora populations.
  • A larger number of flowers and wider corolla tubes had both direct and indirect positive effects on female fitness in the P. secundiflora populations. The indirect effects of these two traits on female fitness were mediated by nectar robbers. The indirect effect of the number of flowers on female fitness increased with increasing nectar robbing intensity. In most populations, the direct and/or indirect effects of floral traits on female fitness were stronger in the S‐morph flowers than in the L‐morph flowers. In addition, nectar robbers had a direct positive effect on female fitness, but this effect varied between the L‐ and S‐morph flowers.
  • These results show the potential role of nectar robbers in influencing the trait–fitness relationships in this primrose species.
  相似文献   

20.
The shift from outcrossing to selfing is often accompanied by striking changes in floral morphology towards a “selfing syndrome”, which is characterized by flowers with reduction in size, pollen: ovule (P/O) ratio, and herkogamy. This study aims to test whether such changes have occurred in the North American Arabidopsis lyrata, which is of particular interest because of the relatively recent transitions to selfing in this system. Flower size, flower shape, herkogamy levels, P/O ratio, and floral integration of six self-incompatible (outcrossing) and six self-compatible (selfing) populations of A. lyrata were measured in a common environment using conventional and geometric morphometrics methods. Although selfers had on average 9.2% smaller corollas, 8.4% longer pistils, and 21.5% lower P/O ratios than outcrossers, there were no differences in shape, floral integration, and herkogamy between outcrossing and selfing populations. Moreover, most variation in floral traits was explained by population genetic background rather than by mating system. We conclude that selfing populations in A. lyrata have not evolved a selfing syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号