首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo‐West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR, COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000–3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.  相似文献   

2.
Aim The objective of this study was to reveal the present population structure and infer the gene‐flow history of the Indo‐Pacific tropical eel Anguilla bicolor. Location The Indo‐Pacific region. Methods The entire mitochondrial control region sequence and the genotypes at six microsatellite loci were analysed for 234 specimens collected from eight representative localities where two subspecies have been historically designated. In order to infer the population structure, genetic differentiation estimates, analysis of molecular variance and gene‐tree reconstruction were performed. The history of migration events and population growth was assessed using neutrality tests based on allelic frequency spectrum, coalescent‐based estimation of gene flow and Bayesian demographic analysis using control region sequences. Results Population structure analysis showed genetic divergence between eels from the Indian and Pacific oceans (FST = 0.0174–0.0251, P < 0.05 for microsatellites; ΦST = 0.706, P < 0.001 for control region), while no significant variation was observed within each ocean. Two mitochondrial sublineages that do not coincide with geographical regions were found in the Indian Ocean clade of a gene tree. However, these two sublineages were not differentiated at the microsatellite markers. The estimation of mitochondrial gene‐flow history suggested allopatric isolation between the Indian and Pacific oceans, and a possible secondary contact within the Indian Ocean after an initial population splitting. Bayesian demographic history reconstruction and neutrality tests indicated population growth in each ocean after the Indo‐Pacific divergence. Main conclusions Anguilla bicolor has diverged between the Indian and Pacific oceans, which is consistent with the classical subspecies designation, but is apparently genetically homogeneous in the Indian Ocean. The analysis of gene‐flow and demographic history indicated that the two mitochondrial sublineages observed in the Indian Ocean probably represent the haplotype groups of relict ancestral populations. A comparison with a sympatric congener suggested that absolute physical barriers to gene flow may not be necessary for population divergence in eels.  相似文献   

3.
Knowledge of genetic connectivity dynamics in the world's large‐bodied, highly migratory, apex predator sharks across their global ranges is limited. One such species, the tiger shark (Galeocerdo cuvier), occurs worldwide in warm temperate and tropical waters, uses remarkably diverse habitats (nearshore to pelagic) and possesses a generalist diet that can structure marine ecosystems through top‐down processes. We investigated the phylogeography and the global population structure of this exploited, phylogenetically enigmatic shark by using 10 nuclear microsatellites (= 380) and sequences from the mitochondrial control region (CR,= 340) and cytochrome oxidase I gene (= 100). All three marker classes showed the genetic differentiation between tiger sharks from the western Atlantic and Indo‐Pacific ocean basins (microsatellite FST > 0.129; CR ΦST > 0.497), the presence of North vs. southwestern Atlantic differentiation and the isolation of tiger sharks sampled from Hawaii from other surveyed locations. Furthermore, mitochondrial DNA revealed high levels of intraocean basin matrilineal population structure, suggesting female philopatry and sex‐biased gene flow. Coalescent‐ and genetic distance‐based estimates of divergence from CR sequences were largely congruent (dcorr = 0.0015–0.0050), indicating a separation of Indo‐Pacific and western Atlantic tiger sharks <1 million years ago. Mitochondrial haplotype relationships suggested that the western South Atlantic Ocean was likely a historical connection for interocean basin linkages via the dispersal around South Africa. Together, the results reveal unexpectedly high levels of population structure in a highly migratory, behaviourally generalist, cosmopolitan ocean predator, calling for management and conservation on smaller‐than‐anticipated spatial scales.  相似文献   

4.
The northwestern Indian Ocean harbors a number of larger marine vertebrate taxa that warrant the investigation of genetic population structure given remarkable spatial heterogeneity in biological characteristics such as distribution, behavior, and morphology. Here, we investigate the genetic population structure of four commercially exploited shark species with different biological characteristics (Carcharhinus limbatus, Carcharhinus sorrah, Rhizoprionodon acutus, and Sphyrna lewini) between the Red Sea and all other water bodies surrounding the Arabian Peninsula. To assess intraspecific patterns of connectivity, we constructed statistical parsimony networks among haplotypes and estimated (1) population structure; and (2) time of most recent population expansion, based on mitochondrial control region DNA and a total of 20 microsatellites. Our analysis indicates that, even in smaller, less vagile shark species, there are no contemporary barriers to gene flow across the study region, while historical events, for example, Pleistocene glacial cycles, may have affected connectivity in C. sorrah and R. acutus. A parsimony network analysis provided evidence that Arabian S. lewini may represent a population segment that is distinct from other known stocks in the Indian Ocean, raising a new layer of conservation concern. Our results call for urgent regional cooperation to ensure the sustainable exploitation of sharks in the Arabian region.  相似文献   

5.
Assessing population connectivity is necessary to construct effective marine protected areas. This connectivity depends, among other parameters, inherently on species dispersal capacities. Isolation by distance (IBD ) is one of the main modes of differentiation in marine species, above all in species presenting low dispersal abilities. This study reports the genetic structuring in the tropical hydrozoan Macrorhynchia phoenicea α (sensu Postaire et al ., 2016a), a brooding species, from 30 sampling sites in the Western Indian Ocean and the Tropical Southwestern Pacific, using 15 microsatellite loci. At the local scale, genet dispersal relied on asexual propagation at short distance, which was not found at larger scales. Considering one representative per clone, significant positive F IS values (from ?0.327*** to 0.411***) were found within almost all sites. Gene flow was extremely low at all spatial scales, among sites within islands (<10 km distance) and among islands (100 to >11,000 km distance), with significant pairwise F ST values (from 0.035*** to 0.645***). A general pattern of IBD was found at the Indo‐Pacific scale, but also within ecoregions in the Western Indian Ocean province. Clustering and network analyses identified each island as a potential independent population, while analysis of molecular variance indicated that population genetic differentiation was significant at small (within island) and intermediate (among islands within province) spatial scales. As shown by this species, a brooding life cycle might be corollary of the high population differentiation found in some coastal marine species, thwarting regular dispersal at distances more than a few kilometers and probably leading to high cryptic diversity, each island housing independent evolutionary lineages.  相似文献   

6.
Hybrid zones are natural laboratories for investigating the dynamics of gene flow, reproductive isolation, and speciation. A predominant marine hybrid (or suture) zone encompasses Christmas Island (CHR) and Cocos (Keeling) Islands (CKE), where 15 different instances of interbreeding between closely related species from Indian and Pacific Oceans have been documented. Here, we report a case of hybridization between genetically differentiated Pacific and Indian Ocean lineages of the three‐spot dascyllus, Dascyllus trimaculatus (Rüppell, 1829). Field observations indicate there are subtle color differences between Pacific and Indian Ocean lineages. Most importantly, population densities of color morphs and genetic analyses (mitochondrial DNA and SNPs obtained via RADSeq) suggest that the pattern of hybridization within the suture zone is not homogeneous. At CHR, both color morphs were present, mitochondrial haplotypes of both lineages were observed, and SNP analyses revealed both pure and hybrid genotypes. Meanwhile, in CKE, the Indian Ocean color morphs were prevalent, only Indian Ocean mitochondrial haplotypes were observed, and SNP analysis showed hybrid individuals with a large proportion (~80%) of their genotypes assigning to the Indian Ocean lineage. We conclude that CHR populations are currently receiving an influx of individuals from both ocean basins, with a greater influence from the Pacific Ocean. In contrast, geographically isolated CKE populations appear to be self‐recruiting and with more influx of individuals from the Indian Ocean. Our research highlights how patterns of hybridization can be different at scales of hundreds of kilometers, due to geographic isolation and the history of interbreeding between lineages.  相似文献   

7.
Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo‐Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.  相似文献   

8.
We assessed the effects of the prominent biogeographic (Point Conception and the Peninsula of Baja California) and phylogeographic barriers (Los Angeles Region) of the northeastern Pacific on the population connectivity of the brown smoothhound shark, Mustelus henlei (Triakidae). Data from the mitochondrial control region and six nuclear microsatellite loci revealed significant population structure among three populations: northern (San Francisco), central (Santa Barbara, Santa Catalina, Punta Lobos, and San Felipe), and southern (Costa Rica). Patterns of long‐term and contemporary migration were incongruent, with long‐term migration being asymmetric and occurring in a north to south direction and a lack of significant contemporary migration observed between localities with the exception of Punta Lobos that contributed migrants to all localities within the central population. Our findings indicate that Point Conception may be restricting gene flow between the northern and central populations whereas barriers to gene flow within the central population would seem to be ineffective; additionally, a contemporary expansion of tropical M. henlei into subtropical and temperate waters may have been observed.  相似文献   

9.
Aim Most reef fishes are site‐attached, but can maintain a broad distribution through their highly dispersive larval stage. The whitetip reef shark (Triaenodon obesus) is site‐attached, yet maintains the largest Indo‐Pacific distribution of any reef shark while lacking the larval stage of bony (teleost) fishes. Here we use mitochondrial DNA (mtDNA) sequence data to evaluate the enigma of the sedentary reef shark that maintains a distribution across two‐thirds of the planet. Location Tropical Pacific and Indian Oceans. Methods We analysed 1025 base pairs of the mtDNA control region in 310 individuals from 25 locations across the Indian and Pacific Oceans. Phylogeographic and population genetic analyses were used to reveal the dispersal and recent evolutionary history of the species. Results We resolved 15 mtDNA control region haplotypes, but two comprised 87% of the specimens and were detected at nearly every location. Similar to other sharks, genetic diversity was low (h = 0.550 ± 0.0254 and π = 0.00213 ± 0.00131). Spatial analyses of genetic variation demonstrated strong isolation across the Indo‐Pacific Barrier and between western and central Pacific locations. Pairwise ΦST comparisons indicated high connectivity among archipelagos of the central Pacific but isolation across short distances of contiguous habitat (Great Barrier Reef) and intermittent habitat (Hawaiian Archipelago). In the eastern Pacific only a single haplotype (the most common one in the central Pacific) was observed, indicating recent dispersal (or colonization) across the East Pacific Barrier. Main conclusions The shallow haplotype network indicates recent expansion of modern populations within the last half million years from a common ancestor. Based on the distribution of mtDNA diversity, this began with an Indo‐West Pacific centre of origin, with subsequent dispersal to the Central Pacific and East Pacific. Genetic differences between Indian and Pacific Ocean populations are consistent with Pleistocene closures of the Indo‐Pacific Barrier associated with glacial cycles. Pairwise population comparisons reveal weak but significant isolation by distance, and notably do not indicate the high coastal connectivity observed in other shark species. The finding of population structure among semi‐contiguous habitats, but population connectivity among archipelagos, may indicate a previously unsuspected oceanic dispersal behaviour in whitetip reef sharks.  相似文献   

10.
The tropical Indo-West Pacific is the biogeographic region with the highest diversity of marine shallow water species, with its centre in the Indo-Malay Archipelago. However, due to its high endemism, the Red Sea is also considered as an important centre of evolution. Currently, not much is known about exchange among the Red Sea, Indian Ocean and West Pacific, as well as connectivity within the Indo-Malay Archipelago, even though such information is important to illuminate ecological and evolutionary processes that shape marine biodiversity in these regions. In addition, the inference of connectivity among populations is important for conservation. This study aims to test the hypothesis that the Indo-Malay Archipelago and the Red Sea are important centres of evolution by studying the genetic population structure of the giant clam Tridacna maxima. This study is based on a 484-bp fragment of the cytochrome c oxidase I gene from 211 individuals collected at 14 localities in the Indo-West Pacific to infer lineage diversification and gene flow as a measure for connectivity. The analysis showed a significant genetic differentiation among sample sites in the Indo-West Pacific (Φst = 0.74, P < 0.001) and across the Indo-Malay Archipelago (Φst = 0.72, P < 0.001), indicating restricted gene flow. Hierarchical AMOVA revealed the highest fixation index (Φct = 0.8, P < 0.001) when sample sites were assigned to the following regions: (1) Red Sea, (2) Indian Ocean and Java Sea, (3) Indonesian throughflow and seas in the East of Sulawesi, and (4) Western Pacific. Geological history as well as oceanography are important factors that shape the genetic structure of T. maxima in the Indo-Malay Archipelago and Red Sea. The observed deep evolutionary lineages might include cryptic species and this result supports the notion that the Indo-Malay Archipelago and the Red Sea are important centres of evolution. Communicated by Biology Editor Dr. Ruth Gates  相似文献   

11.
In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep‐sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep‐sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back‐arc basins, currently of great interest for deep‐sea mineral extraction. A total of 42 loci were sequenced from each individual using high‐throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies.  相似文献   

12.
Population genetic analyses based on both mitochondrial cytochrome b and the internal transcribed spacer 2 of recombinant (r)DNA genes were implemented to examine hypotheses of population differentiation in the angular angel shark Squatina guggenheim, one of the four most‐widespread endemic species inhabiting coastal ecosystems in the south‐western Atlantic Ocean. A total of 82 individuals of S. guggenheim from 10 sampling sites throughout the Río de la Plata mouth, its maritime front, the outer shelf at the subtropical confluence and the coastal areas of the south‐west Atlantic Ocean, were included. The analysis of molecular variance (AMOVA) based on the second internal transcribed spacer (its‐2) region supports that the samples from the outer shelf represent an isolated group from other sites. Historical gene flow in a coalescent‐based approach revealed significant immigration and emigration asymmetry between sampling sites. Based on the low level of genetic diversity, the existence of a long‐term population decline or a past recent population expansion following a population bottleneck could be proposed in S. guggenheim. This demographic differentiation suggests a degree of vulnerability to overexploitation in this endemic and endangered south‐west Atlantic Ocean shark, given its longevity and low reproductive potential.  相似文献   

13.
Bryde’s whales (Balaenoptera brydei) differ from other typical baleen whale species because they are restricted to tropical and warm temperate waters in major oceans, and frequent trans-equatorial movement has been suggested for the species. We tested this hypothesis by analyzing genetic variation at 17 microsatellite loci (N = 508) and 299 bp of mitochondrial DNA (mtDNA) control region sequences (N = 472) in individuals obtained from the western North Pacific, South Pacific, and eastern Indian Ocean. Combined use of microsatellite and mtDNA markers allowed us to distinguish between contemporary gene flow and ancestral polymorphism and to describe sex-specific philopatry. A high level of genetic diversity was found within the samples. Both nuclear and mtDNA markers displayed similar population structure, indicating a lack of sex-specific philopatry. Spatial structuring was detected using both frequency-based population parameters and individual-based Bayesian approaches. Whales in the samples from different oceanic regions came from genetically distinct populations with evidence of limited gene flow. We observed low mtDNA sequence divergence among populations and a lack of concordance between geographic and phylogenetic position of mtDNA haplotypes, suggesting recent separation of populations rather than frequent trans-equatorial and inter-oceanic movement. We conclude that current gene flow between Bryde’s whale populations is low and that effective management actions should treat them as separate entities to ensure continued existence of the species.  相似文献   

14.
This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θO) ranged from 0.00 to 0.15, with a mean of 0.08. The θO values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θO = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04–0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates.  相似文献   

15.
Even though the Indo-Malay Archipelago hosts the world's greatest diversity of marine species, studies on the genetic population structure and gene flow of marine organisms within this area are rather rare. Consequently, not much is known about connectivity of marine populations in the Indo-Malay Archipelago, despite the fact that such information is important to understand evolutionary and ecological processes in the centre of marine biodiversity. This study aims to investigate the genetic population structure of the boring giant clam, Tridacna crocea . The analysis is based on a 456-bp fragment of the cytochrome oxidase I gene from 300 individuals collected from 15 localities across the Indo-Malay Archipelago. Tridacna crocea shows a very strong genetic population structure and isolation by distance, indicating restricted gene flow between almost all sample sites. The observed ΦST-value of 0.28 is very high compared to other studies on giant clams. According to the pronounced genetic differences, the sample sites can be divided into four groups from West to East: (i) Eastern Indian Ocean, (ii) Java Sea, (iii) South China Sea, Indonesian throughflow, as well as seas in the East of Sulawesi, and (iv) Western Pacific. This complex genetic population structure and pattern of connectivity, characterised by restricted gene flow between some sites and panmixing between others can be attributed to the geological history and prevailing current regimes in the Indo-Malay Archipelago.  相似文献   

16.
Aim We assessed population differentiation and gene flow across the range of the blue‐footed booby (Sula nebouxii) (1) to test the generality of the hypothesis that tropical seabirds exhibit higher levels of population genetic differentiation than their northern temperate counterparts, and (2) to determine if specialization to cold‐water upwelling systems increases dispersal, and thus gene flow, in blue‐footed boobies compared with other tropical sulids. Location Work was carried out on islands in the eastern tropical Pacific Ocean from Mexico to northern Peru. Methods We collected samples from 173 juvenile blue‐footed boobies from nine colonies spanning their breeding distribution and used molecular markers (540 base pairs of the mitochondrial control region and seven microsatellite loci) to estimate population genetic differentiation and gene flow. Our analyses included classic population genetic estimation of pairwise population differentiation, population growth, isolation by distance, associations between haplotypes and geographic locations, and analysis of molecular variance, as well as Bayesian analyses of gene flow and population differentiation. We compared our results with those for other tropical seabirds that are not specialized to cold‐water upwellings, including brown (Sula leucogaster), red‐footed (S. sula) and masked (S. dactylatra) boobies. Results Blue‐footed boobies exhibited weak global population differentiation at both mitochondrial and nuclear loci compared with all other tropical sulids. We found evidence of high levels of gene flow between colonies within Mexico and between colonies within the southern portion of the range, but reduced gene flow between these regions. We also found evidence for population growth, isolation by distance and weak phylogeographic structure. Main conclusions Tropical seabirds can exhibit weak genetic differentiation across large geographic distances, and blue‐footed boobies exhibit the weakest population differentiation of any tropical sulid studied thus far. The weak population genetic structure that we detected in blue‐footed boobies may be caused by increased dispersal, and subsequently increased gene flow, compared with other sulids. Increased dispersal by blue‐footed boobies may be the result of the selective pressures associated with cold‐water upwelling systems, to which blue‐footed boobies appear specialized. Consideration of foraging environment may be particularly important in future studies of marine biogeography.  相似文献   

17.
To improve understanding of bull shark Carcharhinus leucas reproductive biology, we analysed reproductive traits from 118 bull sharks caught along Reunion Island coasts (Western Indian Ocean), including 16 gravid females. Specific microsatellite loci were used to investigate the frequency of multiple paternity. Males and females reached maturity at c. 234 cm and 257 cm total length (LT), respectively, and litter sizes ranged from 5 to 14 embryos. Analysis of the 16 litters collected in various months of the year indicated that parturition occurs between October and December, with a size at birth c. 60–80 cm LT and that the gestation period is probably c. 12 months. Assuming a 1 year resting period and a period of sperm storage (4–5 months) between mating (in June–September) and fertilisation, the reproductive cycle of bull sharks at Reunion Island would be biennial. At least 56.25% of the litters investigated were polyandrous, sired by 2–5 males. Several males that each sired several litters conceived during the same or distinct mating seasons were detected, suggesting both a seasonal aggregation of sharks to mate and some male fidelity to mating site. Altogether, these findings provide valuable information for both shark risk management and conservation of the species in the Western Indian Ocean.  相似文献   

18.
Both mtDNA variation and allozyme data demonstrate that geographic groupings of different color morphs of the starfish Linckia laevigata are congruent with a genetic discontinuity between the Indian and Pacific Oceans. Populations of L. laevigata sampled from Thailand and South Africa, where an orange color morph predominates, were surveyed using seven polymorphic enzyme loci and restriction fragment analysis of a portion of the mtDNA including the control region. Both allozyme and DNA data demonstrated that these populations were significantly genetically differentiated from each other and to a greater degree from 23 populations throughout the West Pacific Ocean, where a blue color morph is predominant. The genetic structure observed in L. laevigata is consistent with traditional ideas of a biogeographic boundary between the Indian and Pacific Oceans except that populations several hundreds kilometers off the coast of north Western Australia (Indian Ocean) were genetically similar to and had the same color morphs as Pacific populations. It is suggested that gene flow may have continued (possibly at a reduced rate) between these offshore reefs in Western Australia and the West Pacific during Pleistocene falls in sea level, but at the same time gene flow was restricted between these Western Australian populations and those in both Thailand and South Africa, possibly by upwellings. The molecular data in this study suggest that vicariant events have played an important role in shaping the broadscale genetic structure of L. laevigata. Additionally, greater genetic structure was observed among Indian Ocean populations than among Pacific Ocean populations, probably because there are fewer reefs and island archipelagos in the Indian Ocean than in the Pacific, and because present-day surface ocean currents do not facilitate long-distance dispersal.  相似文献   

19.
Marine systems have traditionally been thought of as “open” with few barriers to gene flow. In particular, many marine organisms in the Southern Ocean purportedly possess circumpolar distributions that have rarely been well verified. Here, we use the highly abundant and endemic Southern Ocean brittle star Ophionotus victoriae to examine genetic structure and determine whether barriers to gene flow have existed around the Antarctic continent. Ophionotus victoriae possesses feeding planktotrophic larvae with presumed high dispersal capability, but a previous study revealed genetic structure along the Antarctic Peninsula. To test the extent of genetic differentiation within O. victoriae, we sampled from the Ross Sea through the eastern Weddell Sea. Whereas two mitochondrial DNA markers (16S rDNA and COI) were employed to allow comparison to earlier work, a 2b‐RAD single‐nucleotide polymorphism (SNP) approach allowed sampling of loci across the genome. Mitochondrial data from 414 individuals suggested three major lineages, but 2b‐RAD data generated 1,999 biallelic loci that identified four geographically distinct groups from 89 samples. Given the greater resolution by SNP data, O. victoriae can be divided into geographically distinct populations likely representing multiple species. Specific historical scenarios that explain current population structure were examined with approximate Bayesian computation (ABC) analyses. Although the Bransfield Strait region shows high diversity possibly due to mixing, our results suggest that within the recent past, dispersal processes due to strong currents such as the Antarctic Circumpolar Current have not overcome genetic subdivision presumably due to historical isolation, questioning the idea of large open circumpolar populations in the Southern Ocean.  相似文献   

20.
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio‐economically, relatively little information is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; c. 21 Kya) indicated large areas of suitable habitat south of the species’ current‐day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long‐term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号