首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent declines in black brant (Branta bernicla nigricans) are likely the result of low recruitment. In geese, recruitment is strongly affected by habitat conditions experienced by broods because gosling growth rates are indicative of forage conditions during brood rearing and strongly influence future survival and productivity. In 2006–2008, we studied gosling growth at 3 of the 4 major colonies on the Yukon-Kuskokwim Delta, Alaska. Estimates of age-adjusted gosling mass at the 2 southern colonies (approx. 30% of the world population of breeding black brant) was low (gosling mass at 30.5 days ranged 346.7 ± 42.5 g to 627.1 ± 15.9 g) in comparison to a third colony (gosling mass at 30.5 days ranged 640.0 ± 8.3 g to 821.6 ± 13.6 g) and to most previous estimates of age-adjusted mass of brant goslings. Thus, our results are consistent with the hypothesis that poor gosling growth is negatively influencing the brant population. There are 2 non-mutually exclusive explanations for the apparent growth rates we observed. First, the population decline may have been caused by density-independent factors and habitat capacity has declined along with the population as a consequence of the unique foraging feedback between brant and their grazing habitats. Alternatively, a reduction in habitat capacity, as a result of changes to the grazing system, may have negatively influenced gosling growth, which is contributing to the overall long-term population decline. We found support for both explanations. For colonies over habitat capacity we recommend management to enhance foraging habitat, whereas for colonies below habitat capacity we recommend management to increase nesting productivity. © 2010 The Wildlife Society.  相似文献   

2.
1 We investigated the effects of grazing by black brant geese on Carex subspathacea lawns on the Yukon-Kuskokwim delta, Alaska.
2 We compared variation in growth and forage quality in both grazed and temporarily exclosed sites to determine responses of C. subspathacea to grazing at landscape scales within two nesting colonies that had experienced different population dynamics over recent decades.
3 Landscapes differed in forage quality, grazing patterns, and in the effect grazing had on C. subspathacea forage characteristics. We found no effect of grazing on net above-ground primary productivity ( NAPP ) over a wide range of natural grazing intensities at the landscape scale.
4 No differences in forage quality, NAPP , or response of C. subspathacea growth rates to grazing pressures could be detected between colonies. This suggests that goose grazing does not have deleterious effects on C. subspathacea in this ecosystem.
5 It has been suggested that gosling growth rates are sensitive to seasonal declines in forage availability and quality. Spatial variation in forage quality and availability per sampled area exceeded seasonal variation in these characteristics and is likely to have dramatic effects on gosling growth and recruitment rates.  相似文献   

3.
Manipulations of brood size measure the willingness or ability of parents to invest in offspring and different reproductive roles may lead to differences in feeding effort between the sexes. Parental investment in birds is usually assessed by quantifying feeding rates, but this provides an incomplete picture of parental effort because it fails to account for how parents collect food on the landscape. We studied northern flickers (Colaptes auratus), a woodpecker in which males provide the majority of parental care and used a repeated measures design and short‐term (24 h) brood enlargements (N = 35) and reductions (N = 27) to assess effects of treatment on feeding rates to nestlings and parental foraging behaviour. Parents of enlarged broods did not significantly increase feeding rate, resulting in a decline in nestling mass. Parents of reduced broods decreased their feeding rates by 84%, but increased per capita feeding rates, resulting in nestling mass gain. The variation in feeding rates to enlarged broods was not influenced by feather corticosterone, body condition, feather re‐growth rate or mass change between the incubation and nestling periods. Foraging pattern on the landscape remained the same during the enlarged treatment for both sexes. We conclude that flickers respond to proximate cues in brood demands, but do not increase feeding rates to enlarged broods, at least in the short term. A literature review suggested that this lack of response is atypical for short‐lived species. We hypothesize that parents in species with large home ranges and long nestling periods face energetic limitations that constrain their ability to respond to enlarged broods. We encourage future studies to assess foraging behaviour on the landscape to document important trade‐offs for parents such as predation risk and energy expenditure while feeding offspring.  相似文献   

4.
Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species‐specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15–25°C). Thermal regimes for L. serrata, which has recovered from Bd‐related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long‐lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low‐elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant‐temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.  相似文献   

5.
Terrestrial biogeochemical feedbacks to the climate are strongly modulated by the temperature response of soil microorganisms. Tropical forests, in particular, exert a major influence on global climate because they are the most productive terrestrial ecosystem. We used an elevation gradient across tropical forest in the Andes (a gradient of 20°C mean annual temperature, MAT), to test whether soil bacterial and fungal community growth responses are adapted to long‐term temperature differences. We evaluated the temperature dependency of soil bacterial and fungal growth using the leucine‐ and acetate‐incorporation methods, respectively, and determined indices for the temperature response of growth: Q10 (temperature sensitivity over a given 10oC range) and Tmin (the minimum temperature for growth). For both bacterial and fungal communities, increased MAT (decreased elevation) resulted in increases in Q10 and Tmin of growth. Across a MAT range from 6°C to 26°C, the Q10 and Tmin varied for bacterial growth (Q10–20 = 2.4 to 3.5; Tmin = ?8°C to ?1.5°C) and fungal growth (Q10–20 = 2.6 to 3.6; Tmin = ?6°C to ?1°C). Thus, bacteria and fungi did not differ significantly in their growth temperature responses with changes in MAT. Our findings indicate that across natural temperature gradients, each increase in MAT by 1°C results in increases in Tmin of microbial growth by approximately 0.3°C and Q10–20 by 0.05, consistent with long‐term temperature adaptation of soil microbial communities. A 2°C warming would increase microbial activity across a MAT gradient of 6°C to 26°C by 28% to 15%, respectively, and temperature adaptation of microbial communities would further increase activity by 1.2% to 0.3%. The impact of warming on microbial activity, and the related impact on soil carbon cycling, is thus greater in regions with lower MAT. These results can be used to predict future changes in the temperature response of microbial activity over different levels of warming and over large temperature ranges, extending to tropical regions.  相似文献   

6.
Body mass declines during wing moult in numerous, but not all, populations of Anatidae. We assessed two leading hypotheses for body mass dynamics during wing moult: (1) body mass dynamics are adapted to attain a target body mass at the end of wing moult (restraint hypothesis) vs. (2) body mass dynamics reflect environmental constraint on the nutrient–energy balance during wing moult (constraint hypothesis). We used regressions of mass of breeding female Black Brant Branta bernicla nigricans on ninth primary length (a measure of moult stage) for each of 16 years to assess mass dynamics during wing moult and used regression equations to predict mass at the beginning and end of wing moult each year. We also included gosling mass at 30 days (an indicator of forage availability) in models of adult mass to assess how mass dynamics varied as a function of foraging conditions. Predicted body mass (± 95% CI) at the start of wing moult (ninth primary = 0 mm) varied significantly among years from 1032 ± 52 to 1169 ± 27 g. Similarly, predicted mass in late wing moult (ninth primary = 142 mm) ranged from 1048 ± 25 to 1222 ± 28 g. The rate of mass gain was significantly related to gosling mass at 30 days: interaction between adult ninth primary length and gosling mass = 0.0031 ± 0.0020 (P = 0.003). Females initiated wing moult at lower body masses, gained mass more rapidly and ended with wing moult heaviest when goslings were heaviest. Body mass dynamics of female Black Brant during wing moult were consistent with the constraint hypothesis. The positive association between gosling mass and rate of body mass gain by adult females during wing moult was also consistent with the constraint hypothesis.  相似文献   

7.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

8.
The abundance of greater white-fronted geese (Anser albifrons frontalis) on the Arctic Coastal Plain (ACP) of northern Alaska, USA, has more than tripled since the late 1990s; however, recent rate of annual population growth has declined as population size increased, which may indicate white-fronted geese on the ACP are approaching carrying capacity. We examined rates of gosling growth in greater white-fronted geese at 3 sites on the ACP during 2012–2014 to assist with predictions of future population trends and assess evidence for density-dependent constraints on recruitment. We marked goslings at hatch with individually coded webtags and conducted brood drives during early August to capture, measure, and weigh goslings. Annual estimates of gosling mass at 32 days old (range = 1,190–1,685) indicate that goslings had obtained >60% of asymptotic size. This rate of growth corresponds with that of other goose species and populations with access to high-quality forage and no limitations on forage availability, and is consistent with the overall increase in abundance of white-fronted geese at the ACP scale. Contrary to most previous investigations, age-adjusted mass of goslings did not decline with hatch date. Goslings grew faster in coastal areas than at inland freshwater sites. Taken together, these findings suggest forage was not limiting gosling growth rates in either ecosystem, but forage was of greater quality in coastal areas where goose foraging habitat is expanding because of permafrost subsidence. Spatial patterns of gosling growth corresponded with local-scale patterns of population density and population change; the areas with greatest rates of gosling growth were those with the greatest population density and rates of population increase. We found little evidence to suggest forage during brood rearing was limiting population increase of white-fronted geese on the ACP. Factors responsible for the apparent slowing of ACP-wide population growth are likely those that occur in stages of the annual cycle outside of the breeding grounds. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
《Global Change Biology》2017,23(11):4556-4568
Somatic growth is an integrated, individual‐based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio‐indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long‐lived, highly migratory, primarily herbivorous mega‐consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles—hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta—exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)—the strongest on record—combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = −.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger‐causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region‐wide collaborations.  相似文献   

10.
Ecosystems at the land–sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea‐level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10–30 cm) over month‐to‐year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster‐reef (Crassostrea virginica) growth to interannual variations in mean sea level (MSL) and improve long‐term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade‐old reefs (n = 3) constructed in 1997 and 2000, young reefs (n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade‐old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short‐term (month‐to‐year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster‐reef conservation and restoration.  相似文献   

11.
Periodic and seasonal exposure to high light is a common occurrence for many near‐shore and estuarine phytoplankton. Rapid acclimatization to shifts in light may provide an axis by which some species of phytoplankton can outcompete other microalgae. Patterns of photoacclimation and photosynthetic capacity in the raphidophyte Heterosigma akashiwo (Hada) Hada ex Hara et Chihara isolated from the mid‐Atlantic of the United States were followed in continuous cultures at low‐ and high‐light intensities, followed by reciprocal shifts to the opposite light level. The maximum quantum yield (Fv/Fm) as well as the photosynthetic cross‐section (σPSII) of photosystem II was higher in high‐light cultures compared to low‐light cultures. Significant diurnal variability in photochemistry and photoprotection was noted at both light levels, and high‐light‐acclimated cultures displayed greater variability in photoprotective pathways. When shifted from low to high light, there was only a slight and temporary decline in maximum quantum yield, while cell specific growth more than doubled within 24 h. Rapid acclimation to high light was facilitated by short‐term photoprotection (nonphotochemical quenching), reduced PSII reaction center connectivity, and electron transport. Short‐term increases in de‐epoxidated xanthophyll pigments contributed to nonphotochemical protection, but lagged behind initial increases in nonphotochemical quenching and were not the primary pathway of photoprotection in this alga. By 48 h, photochemistry of cultures shifted from low to high light resembled long‐term high‐light‐acclimated cultures. This isolate of H. akashiwo appears well poised to exploit rapid shifts in light by using unique cellular adjustments in light harvesting and photochemistry.  相似文献   

12.
13.
The TOMM40‐APOE variants are known for their strong, antagonistic associations with Alzheimer's disease and body weight. While a stronger role of the APOE than TOMM40 variants in Alzheimer's disease was suggested, comparative contribution of the TOMM40‐APOE variants in the regulation of body weight remains elusive. We examined additive effects of rs2075650 and rs157580 TOMM40 variants and rs429358 and rs7412 APOE variants coding the ε2/ε3/ε4 polymorphism on body mass index (BMI) in age‐aggregated and age‐stratified cohort‐specific and cohort‐pooled analysis of 27,863 Caucasians aged 20–100 years from seven longitudinal studies. Minor alleles of rs2075650, rs429358, and rs7412 were individually associated with BMI (β = ?1.29, p = 3.97 × 10?9; β = ?1.38, p = 2.78 × 10?10; and β = 0.58, p = 3.04 × 10?2, respectively). Conditional analysis with rs2075650 and rs429358 identified independent BMI‐lowering associations for minor alleles (β = ?0.63, p = 3.99 × 10?2 and β = ?0.94, p = 2.17 × 10?3, respectively). Polygenic mega‐analysis identified additive effects of the rs2075650 and rs429358 heterozygotes (β = ?1.68, p = 3.00 × 10?9), and the strongest BMI‐lowering association for the rs2075650 heterozygous and rs429358 minor allele homozygous carriers (β = ?4.11, p = 2.78 × 10?3). Conditional analysis with four polymorphisms identified independent BMI‐lowering (rs2075650, rs157580, and rs429358) and BMI‐increasing (rs7412) associations of heterozygous genotypes with BMI. Age‐stratified conditional analysis revealed well‐powered support for a differential and independent association of the rs429358 heterozygote with BMI in younger and older individuals, β = 0.58, 95% confidence interval (CI) = ?1.18, 2.35, p = 5.18 × 10?1 for 3,068 individuals aged ≤30 years and β = ?4.28, CI = ?5.65, ?2.92, p = 7.71 × 10?10 for 6,052 individuals aged >80 years. TOMM40 and APOE variants are independently and additively associated with BMI. The APOE ε4‐coding rs429358 polymorphism is associated with BMI in older individuals but not in younger individuals.  相似文献   

14.
Goose populations molting in the Teshekpuk Lake Special Area of the National Petroleum Reserve—Alaska have changed in size and distribution over the past 30 years. Black brant (Branta bernicla nigricans) are relatively stable in numbers but are shifting from large, inland lakes to salt marshes. Concurrently, populations of greater white-fronted geese (Anser albifrons frontalis) have increased seven fold. Populations of Canada geese (Branta canadensis and/or B. hutchinsii) are stable with little indication of distributional shifts. The lesser snow goose (Anser caerulescens caerulescens) population is proportionally small, but increasing rapidly. Coastline erosion of the Beaufort Sea has altered tundra habitats by allowing saltwater intrusion, which has resulted in shifts in composition of forage plant species. We propose two alternative hypotheses for the observed shift in black brant distribution. Ecological change may have altered optimal foraging habitats for molting birds, or alternatively, interspecific competition between black brant and greater white-fronted geese may be excluding black brant from preferred habitats. Regardless of the causative mechanism, the observed shifts in species distributions are an important consideration for future resource planning.  相似文献   

15.
Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from Kdaigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 1 ), was isolated from the AcOEt fraction (Kd‐AC). The BuOH‐soluble fraction afforded quercetin 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 2 ) and the new kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside‐7‐Oβ‐d ‐glucopyranoside ( 3 ), named daigremontrioside. The crude extract, Kd‐AC fraction, flavonoids 1 and 2 were evaluated using acyclovir‐sensitive strains of HSV‐1 and HSV‐2. Kd‐AC was highly active against HSV‐1 (EC50 = 0.97 μg/ml, SI > 206.1) and HSV‐2 (EC50 = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti‐HSV‐1 (EC50 = 7.4 μg/ml; SI > 27 and EC50 = 5.8 μg/ml; SI > 8.6, respectively) and anti‐HSV‐2 (EC50 = 9.0 μg/ml; SI > 22.2 and EC50 = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.  相似文献   

16.
All life requires energy to drive metabolic reactions such as growth and cell maintenance; therefore, fluctuations in energy availability can alter microbial activity. There is a gap in our knowledge concerning how energy availability affects the growth of extreme chemolithoautotrophs. Toward this end, we investigated the growth of thermoacidophile Acidianus ambivalens during sulfur oxidation under aerobic to microaerophilic conditions. Calorimetry was used to measure enthalpy (ΔHinc) of microbial activity, and chemical changes in growth media were measured to calculate Gibbs energy change (ΔGinc) during incubation. In all experiments, Gibbs energy was primarily dissipated through the release of heat, which suggests enthalpy‐driven growth. In microaerophilic conditions, growth was significantly more efficient in terms of biomass yield (defined as C‐mol biomass per mole sulfur consumed) and resulted in lower ΔGinc and ΔHinc. ΔGinc in oxygen‐limited (OL) and oxygen‐ and CO2‐limited (OCL) microaerophilic growth conditions resulted in averages of ?1.44 × 103 kJ/C‐mol and ?7.56 × 102 kJ/C‐mol, respectively, and average ΔHinc values of ?1.11 × 105 kJ/C‐mol and ?4.43 × 104 kJ/C‐mol, respectively. High‐oxygen experiments resulted in lower biomass yield values, an increase in ΔGinc to ?1.71 × 104 kJ/C‐mol, and more exothermic ΔHinc values of ?4.71 × 105 kJ/C‐mol. The observed inefficiency in high‐oxygen conditions may suggest larger maintenance energy demands due to oxidative stresses and a preference for growth in microaerophilic environments.  相似文献   

17.
Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 Branchiostoma individuals by whole‐genome resequencing strategy. We detected over 140 million genomic variations for each Branchiostoma individual. In particular, we applied the pairwise sequentially Markovian coalescent (PSMC) method to estimate the trajectories of changes in the effective population size (Ne) of Branchiostoma population during the Pleistocene. We evaluated the threshold of sequencing depth for proper inference of demographic histories using PSMC was ≥25×. The PSMC results highlight the role of historical global climatic fluctuations in the long‐term population dynamics of Branchiostoma. The inferred ancestral Ne of the Branchiostoma belcheri populations from Zhanjiang and Xiamen (China) seawaters was different in amplitude before the first (mutation rate = 3 × 10?9) or third glaciation (mutation rate = 9 × 10?9) of the Pleistocene, indicating that the two populations most probably started to evolve in isolation in their respective seas after the first or third glaciation of the Pleistocene. A pronounced population bottleneck coinciding with the last glacial maximum was observed in all Branchiostoma individuals, followed by a population expansion occurred during the late Pleistocene. Species that have experienced long‐term declines may be especially vulnerable to recent anthropogenic activities. Recently, the industrial pollution and the exploitation of sea sand have destroyed the harmonious living environment of amphioxus species. In the future, we need to protect the habitat of Branchiostoma and make full use of these detected genetic variations to facilitate the functional study of Branchiostoma for adaptation to local environments.  相似文献   

18.
The composition of oil samples isolated from needles of Pinus halepensis growing in three locations in Corsica (Saleccia, Capo di Feno, and Tre Padule) has been investigated by combination of chromatographic (GC with retention indices) and spectroscopic (MS and 13C‐NMR) techniques. In total, 35 compounds that accounted for 77 – 100% of the whole composition have been identified. α‐Pinene, myrcene, and (E)‐β‐caryophyllene were the major component followed by α‐humulene and 2‐phenylethyl isovalerate. Various diterpenes have been identified as minor components. 47 Oil samples isolated from pine needles have been analyzed and were differentiated in two groups. Oil samples of the first group (15 samples) contained myrcene (M = 28.1 g/100 g; SD = 10.6) and (E)‐β‐caryophyllene (M = 19.0 g/100 g; SD = 2.2) as major components and diterpenes were absent. All these oil samples were isolated from pine needles harvested in Saleccia. Oil samples of the second group (32 samples) contained mostly (E)‐β‐caryophyllene (M = 28.7 g/100 g; SD = 7.9), α‐pinene (M = 12.3 g/100 g; SD = 3.6), and myrcene (M = 11.7 g/100 g; SD = 7.3). All these oil samples were isolated from pine needles harvested in Capo di Feno and Tre Padule.  相似文献   

19.
Failed oak regeneration is widely reported in temperate forests and has been linked in part to changed disturbance regimes and land‐use. We investigated if the North American fire–oak hypothesis could be applicable to temperate European oaks (Quercus robur, Quercus petraea) using a replicated field experiment with contrasting canopy openness, protection against ungulate browsing (fencing/no fencing), and low‐intensity surface fire (burn/no burn). Survival, relative height growth (RGRH), browsing damage on naturally regenerated oaks (≤300 cm tall), and changes in competing woody vegetation were monitored over three years. Greater light availability in canopy gaps increased oak RGRH (p = .034) and tended to increase survival (p = .092). There was also a trend that protection from browsing positively affected RGRH (p = .058) and survival (p = .059). Burning reduced survival (p < .001), nonetheless, survival rates were relatively high across treatment combinations at the end of the experiment (54%–92%). Most oaks receiving fire were top‐killed and survived by producing new sprouts; therefore, RGRH in burned plots became strongly negative the first year. Thereafter, RGRH was greater in burned plots (p = .002). Burning altered the patterns of ungulate browsing frequency on oaks. Overall, browsing frequency was greater during winter; however, in recently burned plots summer browsing was prominent. Burning did not change relative density of oaks, but it had a clear effect on competing woody vegetation as it reduced the number of individuals (p < .001) and their heights (p < .001). Our results suggest that young, temperate European oaks may respond similarly to fire as their North American congeners. However, disturbance from a single low‐intensity fire may not be sufficient to ensure a persistent competitive advantage—multiple fires and canopy thinning to increase light availability may be needed. Further research investigating long‐term fire effects on oaks of various ages, species‐specific response of competitors and implications for biodiversity conservation is needed.  相似文献   

20.
Festuca arundinacea is a drought tolerant species. Lolium multiflorum has better forage quality but lower tolerance to abiotic stresses. Their hybrids offer an opportunity to perform research on the molecular basis of tolerance to drought. The aim of this work was to recognise the mechanisms of response to short‐term drought (11 days) in a glasshouse in two L. multiflorum/F. arundinacea introgression forms with distinct levels of tolerance to long‐term drought (14 weeks) in the field. Measurements of physiological parameters, analyses of protein accumulation profiles using two‐dimensional gel electrophoresis, and mass spectrometry identification of proteins, which were accumulated differentially between the selected genotypes during short‐term drought, were performed. Genotype 7/6, with lower yield potential during 14 weeks of drought, and lower ability to re‐grow after watering, had a higher capacity for photosynthesis during 11 days of drought. Genotype 4/10, more tolerant to long‐term drought, was able to repair damaged cell membranes after watering and was also characterised by lower transpiration during short‐term drought. A total of 455 proteins were analysed, and the 17 that were differentially accumulated between the two genotypes were identified. The results of physiological and proteomic research led to a hypothesis that the higher photosynthetic capacity of genotype 7/6 could be due to a more efficient Calvin cycle, supported by higher accumulation of crucial proteins involving chloroplast aldolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号