首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Ectomycorrhizal fungi commonly associate with the roots of forest trees where they enhance nutrient and water uptake, promote seedling establishment and have an important role in forest nutrient cycling. Predicting the response of ectomycorrhizal fungi to environmental change is an important step to maintaining forest productivity in the future. These predictions are currently limited by an incomplete understanding of the relative significance of environmental drivers in determining the community composition of ectomycorrhizal (ECM) fungi at large spatial scales. To identify patterns of community composition in ECM fungi along regional scale gradients of climate and nitrogen deposition in Scotland, fungal communities were analysed from 15 seminatural Scots pine (Pinus sylvestris L.) forests. Fungal taxa were identified by sequencing of the ITS rDNA region using fungal‐specific primers. Nonmetric multidimensional scaling was used to assess the significance of 16 climatic, pollutant and edaphic variables on community composition. Vector fitting showed that there was a strong influence of rainfall and soil moisture on community composition at the species level, and a smaller impact of temperature on the abundance of ectomycorrhizal exploration types. Nitrogen deposition was also found to be important in determining community composition, but only when the forest experiencing the highest deposition (9.8 kg N ha?1 yr?1) was included in the analysis. This finding supports previously published critical load estimates for ectomycorrhizal fungi of 5–10 kg N ha?1 yr?1. This work demonstrates that both climate and nitrogen deposition can drive gradients of fungal community composition at a regional scale.  相似文献   

2.
    
The woodwasp Urocerus albicornis (Fabricius, 1781) (Hymenoptera: Siricidae) is a forest pest native to North America and occasionally introduced into European countries. One of these invasive woodwasps was collected in a local forest in Nagano Prefecture, Central Japan. The collected individual was an adult female ovipositing on a log from a Japanese larch (Larix kaempferi (Lamb.) Carrière). Although several of these woodwasps have been found on imported logs in Japan, this is the first record of the alien woodwasp in a local forest within Japan and Asia. This finding indicates that a population of this invasive woodwasp may be established in Japanese forests.  相似文献   

3.
    
Whilst changes in freshwater assemblages along gradients of environmental stress have been relatively well studied, we know far less about intraspecific variation to these same stressors. A stressor common in fresh waters worldwide is leachates from terrestrial plants. Leachates alter the physiochemical environment of fresh waters by lowering pH and dissolved oxygen and also releasing toxic compounds such as polyphenols and tannins, all of which can be detrimental to aquatic organisms. We investigated how chronic exposure to Eucalyptus leaf leachate affected the growth and survival of juvenile southern pygmy perch (Nannoperca australis) collected from three populations with different litter inputs, hydrology and observed leachate concentrations. Chronic exposure to elevated leachate levels negatively impacted growth and survival, but the magnitude of these lethal and sublethal responses was conditional on body size and source population. Bigger fish had increased survival at high leachate levels but overall slower growth rates. Body size also varied among populations and fish from the population exposed to the lowest natural leachate concentrations had the highest average stress tolerance. Significant intraspecific variation in both growth and survival caused by Eucalyptus leachate exposure indicates that the magnitude (but not direction) of these stress responses varies across the landscape. This raises the potential for leachate‐induced selection to operate at an among‐population scale. The importance of body size demonstrates that the timing of leachate exposure during ontogeny is central in determining the magnitude of biological response, with early life stages being most vulnerable. Overall, we demonstrate that Eucalyptus leachates are prevalent and potent selective agents that can trigger important sublethal impacts, beyond those associated with more familiar fish kills, and reiterate that dissolved organic carbon is more than just an energy source in aquatic environments.  相似文献   

4.
    
Northern and central European Arabidopsis lyrata ssp. petraea populations are locally adapted to prevailing climatic conditions through differences in timing of life history events. The timing of flowering and, in perennials, the timing of growth cessation influence fitness. Phytochrome A may have an important role in regulating these life history traits as it perceives changes in daylength. We asked whether PHYA has contributed to local adaptation to the northern conditions in A. l. petraea. To search for signals of directional selection at the PHYA locus, we resequenced PHYA and 9 short fragments around PHYA from a 57‐kb region from a German (Plech) and a Norwegian (Spiterstulen) population and compared patterns of differentiation and diversity to a set of 19 reference loci around the genome. First, we found that the populations were highly differentiated: there were three nonsynonymous fixed differences at the PHYA locus, which was in stark contrast with the total four fixed differences in the 19 reference loci. Compatible with a sweep hypothesis, variation was almost completely removed from the 9.4‐kb region around PHYA in the northern Spiterstulen population. The overall level of linkage disequilibrium (LD) was higher in Spiterstulen, but there was no LD across the PHYA locus in the population, which is also a known consequence of a selective sweep. The sweep has likely occurred after the last glacial maximum, which suggests that it has contributed to adaptation to the northern conditions.  相似文献   

5.
    
Over time, populations of species can expand, contract, fragment and become isolated, creating subpopulations that must adapt to local conditions. Understanding how species maintain variation after divergence as well as adapt to these changes in the face of gene flow is of great interest, especially as the current climate crisis has caused range shifts and frequent migrations for many species. Here, we characterize how a mycophageous fly species, Drosophila innubila, came to inhabit and adapt to its current range which includes mountain forests in south‐western USA separated by large expanses of desert. Using population genomic data from more than 300 wild‐caught individuals, we examine four populations to determine their population history in these mountain forests, looking for signatures of local adaptation. In this first extensive study, establishing D. innubila as a key genomic \"Sky Island\" model, we find D. innubila spread northwards during the previous glaciation period (30–100 KYA) and have recently expanded even further (0.2–2 KYA). D. innubila shows little evidence of population structure, consistent with a recent establishment and genetic variation maintained since before geographic stratification. We also find some signatures of recent selective sweeps in chorion proteins and population differentiation in antifungal immune genes suggesting differences in the environments to which flies are adapting. However, we find little support for long‐term recurrent selection in these genes. In contrast, we find evidence of long‐term recurrent positive selection in immune pathways such as the Toll signalling system and the Toll‐regulated antimicrobial peptides.  相似文献   

6.
    
Selection processes are believed to be an important evolutionary driver behind the successful establishment of nonindigenous species, for instance through adaptation for invasiveness (e.g. dispersal mechanisms and reproductive allocation). However, evidence supporting this assumption is still scarce. Genome scans have often identified loci with atypical patterns of genetic differentiation (i.e. outliers) indicative of selection processes. Using microsatellite‐ and AFLP‐based genome scans, we looked for evidence of selection following the introduction of the mollusc Crepidula fornicata. Native to the northwestern Atlantic, this gastropod has become an emblematic invader since its introduction during the 19th and 20th centuries in the northeastern Atlantic and northeastern Pacific. We examined 683 individuals from seven native and 15 introduced populations spanning the latitudinal introduction and native ranges of the species. Our results confirmed the previously documented high genetic diversity in native and introduced populations with little genetic structure between the two ranges, a pattern typical of marine invaders. Analysing 344 loci, no outliers were detected between the introduced and native populations or in the introduced range. The genomic sampling may have been insufficient to reveal selection especially if it acts on traits determined by a few genes. Eight outliers were, however, identified within the native range, underlining a genetic singularity congruent with a well‐known biogeographical break along the Florida. Our results call into question the relevance of AFLP genome scans in detecting adaptation on the timescale of biological invasions: genome scans often reveal long‐term adaptation involving numerous genes throughout the genome but seem less effective in detecting recent adaptation from pre‐existing variation on polygenic traits. This study advocates other methods to detect selection effects during biological invasions—for example on phenotypic traits, although genome scans may remain useful for elucidating introduction histories.  相似文献   

7.
    
Abundance and diversity of fungi in naturally formed knots of Pinus sylvestris affected by Porodaedalea pini were investigated. Samples were taken from trees that were (i) affected, with internal heartwood decay and no conks, (ii) affected, with internal heartwood decay and conks and (iii) controls. The Illumina sequencing technology was used for amplification of DNA, sequencing and analysis. In total, 566,279 raw sequences were obtained from six samples. Sequences included 74% of culturable and 8.4% of non‐culturable fungi and 17.6% of organisms with no reference sequences in NCBI. Abundance of organisms in knotwood, measured as number of OTUs, ranged from 36,272 (29,506 for fungi) to 178,535 (177,484 for fungi) and differed significantly between two trees in a stand and between stands. The highest and lowest average number of fungal OTUs occurred in infected trees with no conks and in trees with conks, respectively. Number of taxa ranged from 171 to 415 and often differed significantly between two trees in one stand and between stands. Greatest diversity occurred in control trees. The number of fungal taxa shared by two trees in one stand was 67–152 and that shared by two stands was 51–141. The majority of fungi were Ascomycota. Those most common in pines affected by P. pini were Coniochaeta hoffmannii and Cfodinicola (19.65%–59.92%). Infundichalara microchona, Leotiomycetes spp. and Rhinocladiella atrovirens were also present. Another common species, Lecanora conizaeoides, occurred most often in control trees (0.30%–8.82%). Porodaedalea pini was detected only sporadically. Non‐culturable fungi were most frequent in the control trees. The greater average abundance and smaller average diversity of fungi in knots of trees infected by P. pini suggest that the pathogen successfully competes with some fungal species and does not inhibit the growth of survivors. Some fungi detected may contribute to production of natural biocides.  相似文献   

8.
    
Photosystem II (PSII) complexes are organized into large supercomplexes with variable amounts of light‐harvesting proteins (Lhcb). A typical PSII supercomplex in plants is formed by four trimers of Lhcb proteins (LHCII trimers), which are bound to the PSII core dimer via monomeric antenna proteins. However, the architecture of PSII supercomplexes in Norway spruce[Picea abies (L.) Karst.] is different, most likely due to a lack of two Lhcb proteins, Lhcb6 and Lhcb3. Interestingly, the spruce PSII supercomplex shares similar structural features with its counterpart in the green alga Chlamydomonas reinhardtii [Kou?il et al. (2016) New Phytol. 210 , 808–814]. Here we present a single‐particle electron microscopy study of isolated PSII supercomplexes from Norway spruce that revealed binding of a variable amount of LHCII trimers to the PSII core dimer at positions that have never been observed in any other plant species so far. The largest spruce PSII supercomplex, which was found to bind eight LHCII trimers, is even larger than the current largest known PSII supercomplex from C. reinhardtii. We have also shown that the spruce PSII supercomplexes can form various types of PSII megacomplexes, which were also identified in intact grana membranes. Some of these large PSII supercomplexes and megacomplexes were identified also in Pinus sylvestris, another representative of the Pinaceae family. The structural variability and complexity of LHCII organization in Pinaceae seems to be related to the absence of Lhcb6 and Lhcb3 in this family, and may be beneficial for the optimization of light‐harvesting under varying environmental conditions.  相似文献   

9.
    
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

10.
    
Invasive species may quickly colonize novel environments, which could be attributed to both phenotypic plasticity and an ability to locally adapt. Reproductive traits are expected to be under strong selection when the new environment limits reproductive success of the invading species. This may be especially important for external fertilizers, which release sperm and eggs into the new environment. Despite adult tolerance to high salinity, the invasive fish Neogobius melanostomus (round goby) is absent from fully marine regions of the Baltic Sea, raising the possibility that its distribution is limited by tolerance during earlier life stages. Here, we investigate the hypothesis that the spread of N. melanostomus is limited by sperm function in novel salinities. We sampled sperm from two invasion fronts with higher and lower salinities in the Baltic Sea and tested them across a range of salinity levels. We found that sperm velocity and percentage of motile sperm declined in salinity levels higher and lower than those currently experienced by the Baltic Sea populations, with different performance curves for the two fronts. Sperm velocity also peaked closer to the home salinity conditions in each respective invasion front, with older localities showing an increased fit to local conditions. By calculating how the sperm velocity has changed over generations, we show this phenotypic shift to be in the range of other fish species under strong selection, indicating ongoing local adaptation or epigenetic acclimation to their novel environment. These results show that while immigrant reproductive dysfunction appears to at least partly limit the distribution of invasive N. melanostomus in the Baltic Sea, local adaptation to novel environments could enable future spread beyond their current boundaries.  相似文献   

11.
    
Exposure of nontarget populations to agricultural chemicals is an important aspect of global change. We quantified the capacity of natural Daphnia magna populations to locally adapt to insecticide exposure through a selection experiment involving carbaryl exposure and a control. Carbaryl tolerance after selection under carbaryl exposure did not increase significantly compared to the tolerance of the original field populations. However, there was evolution of a decreased tolerance in the control experimental populations compared to the original field populations. The magnitude of this decrease was positively correlated with land use intensity in the neighbourhood of the ponds from which the original populations were sampled. The genetic change in carbaryl tolerance in the control rather than in the carbaryl treatment suggests widespread selection for insecticide tolerance in the field associated with land use intensity and suggests that this evolution comes at a cost. Our data suggest a strong impact of current agricultural land use on nontarget natural Daphnia populations.  相似文献   

12.
    
For plant utilizing insects, the shift to a novel host is generally accompanied by a complex set of phenotypic adaptations. Many such adaptations arise in response to differences in plant chemistry, competitive environment, or abiotic conditions. One less well‐understood factor in the evolution of phytophagous insects is the selective environment provided by plant shape and volume. Does the physical structure of a new plant host favor certain phenotypes? Here, we use cactophilic Drosophila, which have colonized the necrotic tissues of cacti with dramatically different shapes and volumes, to examine this question. Specifically, we analyzed two behavioral traits in larvae, pupation height, and activity that we predicted might be related to the ability to utilize variably shaped hosts. We found that populations of D. mojavensis living on lengthy columnar or barrel cactus hosts have greater activity and pupate higher in a laboratory environment than populations living on small and flat prickly pear cactus cladodes. Crosses between the most phenotypically extreme populations suggest that the genetic architectures of these behaviors are distinct. A comparison of activity in additional cactophilic species that are specialized on small and large cactus hosts shows a consistent trend. Thus, we suggest that greater motility and an associated tendency to pupate higher in the laboratory are potential larval adaptations for life on a large plant where space is more abundant and resources may be more sparsely distributed.  相似文献   

13.
  • One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features – overstorey or understorey vegetation – are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering.
  • The study was conducted in the ‘Zielone Bagna’ nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied.
  • Understorey vegetation traits affected tree seedling density (up to 0.5‐m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings.
  • Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas.
  相似文献   

14.
    
Metabolomes, as chemical phenotypes of organisms, are likely not only shaped by the environment but also by common ancestry. If this is the case, we expect that closely related species of pines will tend to reach similar metabolomic solutions to the same environmental stressors. We examined the metabolomes of two sympatric subspecies of Pinus sylvestris in Sierra Nevada (southern Iberian Peninsula), in summer and winter and exposed to folivory by the pine processionary moth. The overall metabolomes differed between the subspecies but both tended to respond more similarly to folivory. The metabolomes of the subspecies were more dissimilar in summer than in winter, and iberica trees had higher concentrations of metabolites directly related to drought stress. Our results are consistent with the notion that certain plant metabolic responses associated with folivory have been phylogenetically conserved. The larger divergence between subspecies metabolomes in summer is likely due to the warmer and drier conditions that the northern iberica subspecies experience in Sierra Nevada. Our results provide crucial insights into how iberica populations would respond to the predicted conditions of climate change under an increased defoliation in the Mediterranean Basin.  相似文献   

15.
    
Detecting and estimating the degree of genetic differentiation among populations of highly mobile marine fish having pelagic larval stages is challenging because their effective population sizes can be large, and thus, little genetic drift and differentiation is expected in neutral genomic sites. However, genomic sites subject to directional selection stemming from variation in local environmental conditions can still show substantial genetic differentiation, yet these signatures can be hard to detect with low‐throughput approaches. Using a pooled RAD‐seq approach, we investigated genomewide patterns of genetic variability and differentiation within and among 20 populations of Atlantic herring in the Baltic Sea (and adjacent Atlantic sites), where previous low‐throughput studies and/or studies based on few populations have found limited evidence for genetic differentiation. Stringent quality control was applied in the filtering of 1 791 254 SNPs, resulting in a final data set of 68 182 polymorphic loci. Clear differentiation was identified between Atlantic and Baltic populations in many genomic sites, while differentiation within the Baltic Sea area was weaker and geographically less structured. However, outlier analyses – whether including all populations or only those within the Baltic Sea – uncovered hundreds of directionally selected loci in which variability was associated with either salinity, temperature or both. Hence, our results support the view that although the degree of genetic differentiation among Baltic Sea herring populations is low, there are many genomic regions showing elevated divergence, apparently as a response to temperature‐ and salinity‐related natural selection. As such, the results add to the increasing evidence of local adaptation in highly mobile marine organisms, and those in the young Baltic Sea in particular.  相似文献   

16.
    
The evolution of life-history traits is characterized by trade-offs between different selection pressures, as well as plasticity across environmental conditions. Yet, studies on local adaptation are often performed under artificial conditions, leaving two issues unexplored: (i) how consistent are laboratory inferred local adaptations under natural conditions and (ii) how much phenotypic variation is attributed to phenotypic plasticity and to adaptive evolution, respectively, across environmental conditions? We reared fish from six locally adapted (domesticated and wild) populations of anadromous brown trout (Salmo trutta) in one semi-natural and three natural streams and recorded a key life-history trait (body size at the end of first growth season). We found that population-specific reaction norms were close to parallel across different streams and QST was similar – and larger than FST – within all streams, indicating a consistency of local adaptation in body size across natural environments. The amount of variation explained by population origin exceeded the variation across stream environments, indicating that genetic effects derived from adaptive processes have a stronger effect on phenotypic variation than plasticity induced by environmental conditions. These results suggest that plasticity does not “swamp” the phenotypic variation, and that selection may thus be efficient in generating genetic change.  相似文献   

17.
    
The pattern of reproductive character displacement (RCD)—in which traits associated with reproductive isolation are more different where two species occur together than where they occur in isolation—is frequently attributed to reinforcement, a process during which natural selection acting against maladaptive mating events leads to enhanced prezygotic isolation between species or incipient species. One of the first studies of RCD to include molecular genetic data was described 40 years ago in a complex of Haitian trunk anole lizards using a small number of allozyme loci. In this example, Anolis caudalis appears to experience divergence in the color and pattern of an extensible throat fan, or dewlap, in areas of contact with closely related species at the northern and southern limits of its range. However, this case study has been largely overlooked for decades; meanwhile, explanations for geographic variation in dewlap color and pattern have focused primarily on adaptation to local signalling environments. We reinvestigate this example using amplified fragment length polymorphism (AFLP) genome scans, mtDNA sequence data, information on dewlap phenotypes and GIS data on environmental variation to test the hypothesis of RCD generated by reinforcement in Haitian trunk anoles. Together, our phenotypic and genetic results are consistent with RCD at the southern and northern limits of the range of A. caudalis. We evaluate the evidence for reinforcement as the explanation for RCD in Haitian trunk anoles, consider alternative explanations and provide suggestions for future work on the relationship between dewlap variation and speciation in Haitian trunk anoles.  相似文献   

18.
    
Taxa with large geographic distributions generally encompass diverse macroclimatic conditions, potentially requiring local adaptation and/or phenotypic plasticity to match their phenotypes to differing environments. These eco‐evolutionary processes are of particular interest in organisms with traits that are directly affected by temperature, such as embryonic development in oviparous ectotherms. Here we examine the spatial distribution of fitness‐related early life phenotypes across the range of a widespread vertebrate, the painted turtle (Chrysemys picta). We quantified embryonic and hatchling traits from seven locations (in Idaho, Minnesota, Oregon, Illinois, Nebraska, Kansas, and New Mexico) after incubating eggs under constant conditions across a series of environmentally relevant temperatures. Thermal reaction norms for incubation duration and hatchling mass varied among locations under this common‐garden experiment, indicating genetic differentiation or pre‐ovulatory maternal effects. However, latitude, a commonly used proxy for geographic variation, was not a strong predictor of these geographic differences. Our findings suggest that this macroclimatic proxy may be an unreliable surrogate for microclimatic conditions experienced locally in nests. Instead, complex interactions between abiotic and biotic factors likely drive among‐population phenotypic variation in this system. Understanding spatial variation in key life‐history traits provides an important perspective on adaptation to contemporary and future climatic conditions.  相似文献   

19.
    
Herbivores have evolved numerous behavioural and physiological adaptations to host plants; however, molecular adaptations are still poorly understood. One well‐studied case comprises the specialist insects that feed on cardenolide‐containing plants. Here, convergent molecular evolution in the Na+/K+‐ATPase results in a reduced sensitivity to cardenolides across four insect orders. Because different plant species and genotypes differ in toxicity, Na+/K+‐ATPase may be under differential selection from geographically varying host plants. We examined the α subunit of Na+/K+‐ATPase in monarch butterflies (Danaus plexippus) from six worldwide populations to test whether differences in their host plant chemistry result in local adaptation at the molecular level. Although our study revealed multiple synonymous changes, we did not find these to be population‐specific, nor did we identify nonsynonymous changes. Additionally, we compared the amino acid sequence of this subunit across 19 species. We identified two novel changes at sites 836 (K836N) and 840 (E840R) in the αM7‐αM8 regions in the genus Danaus. Although previous studies focused on the first two trans‐membrane domains, C‐terminal domains may also interact with cardenolides. These results reveal a lack of molecular evolution of Na+/K+‐ATPase at the population level, and call for additional attention regarding the C‐terminal regions of this important enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号