首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

2.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

3.
Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range.  相似文献   

4.
Reckardt K  Kerth G 《Oecologia》2007,154(3):581-588
Ectoparasites of vertebrates often spend part of their life cycle in their hosts’ home. Consequently, hosts should take into account the parasite infestation of a site when selecting where to live. In a field study, we investigated whether colonial female Bechstein’s bats (Myotis bechsteinii) adapt their roosting behaviour to the life cycle of the bat fly Basilia nana in order to decrease their contact with infective stages of this parasite. B. nana imagoes live permanently on the bat’s body but deposit puparia in the bat’s roosts. The flies metamorphose independently in the roosts, but after metamorphosis emerge only in the presence of a potential host. In a field experiment, the bats preferred non-contagious to contagious day-roosts and hence were able to detect either the parasite load of roosts or some correlate with infestation, such as bat droppings. In addition, 9 years of observational data on the natural roosting behaviour of female Bechstein’s bats indicate that the bats largely avoid re-occupying roosts when highly contagious puparia are likely to be present as a result of previous occupations of the roosts by the bat colony. Our results indicate that the females adapted their roosting behaviour to the age-dependent contagiousness (emergence probability) of the puparia. However, some infested roosts were re-occupied, which we assume was because these roosts provided advantages to the bats (e.g. a beneficial microclimate) that outweighed the negative effects associated with bat fly infestation. We suggest that roost selection in Bechstein’s bats is the outcome of a trade-off between the costs of parasite infestation and beneficial roost qualities.  相似文献   

5.
The decision where to live has far-reaching fitness consequences for animals. In contrast to most other mammals or birds that use sheltered nest sites, female Bechstein's bats frequently switch day roosts during one breeding season, and therefore must often decide where to spend the day. Selecting the right roost is important, because roost quality, e.g. microclimatic condition, influences survival and reproduction in bats. Although thermal factors are very important for the quality of roosts occupied by bats, whether bats base their day roost selection directly on roost temperature has not been tested in the field. Over one summer, we examined and tested the roost choice of 21 individually marked female Myotis bechsteinii living in one maternity colony. In a field experiment, we allowed the bats to choose between relatively warm versus cold bat boxes, while controlling for site preferences. We expected females to exhibit a preference for warm roosts during pregnancy and lactation to accelerate gestation and shorten the period of growth of their young. Roost occupancy over 160 census days reflected significant temperature differences among 89 surveyed roosts (14 tree holes and 75 bat boxes), and preferences changed with the season. Females significantly preferred cold roosts before parturition, whereas post-partum, they significantly favoured warm roosts. Temperature preferences were independent of the roost site, and thus roost selection was based directly on temperature. Boxes with significantly different daytime temperatures did not differ significantly at night. Consequently, bats would have to spend at least 1 day in a new roost to test it. Information transfer among colony members might facilitate knowledge of roost availability. Access to many roosts providing different microclimates is likely to be important for successful reproduction in the endangered Bechstein's bat.  相似文献   

6.
Roost microclimate plays an important role in the survival, growth and reproduction in microbats. Entering torpor is one of the main energy saving mechanisms commonly used by microbats. The use of torpor is affected by roost microclimate and seasonally differs between the two sexes in relation to their reproductive condition. Consequently, thermal properties of male and female roosts should differ. To test this hypothesis, we compared temperature parameters of two anthropogenic day roosts of Daubenton’s bats with a different structure of the population inhabiting them. In accordance with our predictions, the roost occupied by a male-dominated colony was colder and more fluctuant than the maternity roost with a female-dominated population. However, using of the two roosts changed during the season in response to changing energetic demands of the two sexes. While males were almost absent in the warmer maternity roost during pregnancy and lactation, they appeared in this roost during the post-lactation when mating starts. In contrast, females did not use the colder (male) roost until the time of weaning of juveniles, i.e., the time when their thermoregulatory needs change and they may benefit from using colder roost. Our study provides the evidence that the same roost may be used by individuals of different sex and reproductive state in different periods of the year. Generalizations about roost selection without knowledge of temporal variation in roost use and microclimatic conditions should be taken with caution. Anthropogenic roosts may be advantageous to Daubenton’s bats as these can provide a variety of suitable microclimates and/or more space for roosting than tree cavities.  相似文献   

7.
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.  相似文献   

8.
Ectoparasitism in bats seems to be influenced strongly by the type of roost preferred by the hosts, and group size; however, the effect of habitat loss and fragmentation on the prevalence of ectoparasites in bats has scarcely been studied. In northeastern Yucatan, Mexico, we estimated the prevalence of infestation by Streblidae flies in three phyllostomid bat species with different roost preferences (caves, trees, or both) in two types of landscape matrices (tropical semi‐deciduous forest and man‐made pastures) that differed in area of forest cover and the number of forest fragments. Habitat fragmentation and the presence of a contrasting matrix may limit the availability of roosts (trees) and the movement of bats across the landscape. Accordingly, we hypothesized higher prevalence of Streblidae infestation in the pasture matrix and in the group of bats that roost in trees. Bat abundance was higher in the pasture matrix; however, the prevalence of infestation was significantly higher in the continuous forest matrix and in bats that roosted in caves. The prevalence of some species of Streblidae was affected by habitat fragmentation in species that roost in caves, such as Desmodus rotundus, as well as those using foliage and caves, such as Artibeus jamaicensis. Our results provide evidence that some species of Streblidae may respond differently to habitat fragmentation than their hosts, generating changes to bat‐ectoparasite interactions in fragmented areas. Environmental variations involving roosts, not evaluated in this study, may influence our results, since these factors affect ectoparasite abundance and reproduction.  相似文献   

9.
10.
Bats in temperate and subtropical regions typically synchronize birth of a single young with peaks in resource availability driven by local climate patterns. In tropical rain forest, insects are available throughout the year, potentially allowing departures from seasonal monoestry. However, reproductive energy budgets may be constrained by the cost of commuting to foraging grounds from distant roosts. To test these hypotheses, we simultaneously tracked female reproductive activity of 11 insectivorous bat species, insect biomass, and local weather variables for 20 months in a Malaysian rain forest. Five species roost in forest structures and hence have low commuting costs, whereas six species depend on caves, which are limited in the landscape, and are presumed to incur higher commuting costs to foraging sites. Monthly insect biomass was positively correlated with monthly rainfall, and there was a significant relationship between insect biomass and lactation in cave‐roosting but not forest‐roosting species. Cave‐roosting species were seasonally monoestrus, with parturition confined to a two‐month period, whereas in forest‐roosting species, pregnancy and lactation were recorded throughout the year. Our results suggest that the energetic costs of commuting from roosts to foraging grounds shape annual reproductive patterns in tropical rain forest insectivorous bats. Ongoing changes in forest landscapes are likely to increase these costs for cave‐roosting bats, further restricting reproductive opportunities. Climate change is projected to influence the timing of rainfall events in many tropical habitats, which may disrupt relationships between rainfall, insect biomass, and bat reproductive timing, further compromising reproductive success.  相似文献   

11.
Ho YY  Lee LL 《Zoological science》2003,20(8):1017-1024
Patterns of roost use by Formosan leaf-nosed bats (Hipposideros armiger terasensis) were studied from November 1998 to April 2000. Structural characteristics, microclimates, and disturbance levels of 17 roosts used by H. a. terasensis and 15 roosts either used by other bat species (2) or not occupied by any bat species were compared. Roosts used by these bats were significantly larger in size and had greater areas covered by water compared to unused roosts. Entrances of active roosts were more likely to be east-west oriented. Hibernacula had lower entrances and ceilings than did roosts used only in summer. Higher temperatures were recorded in non-breeding roosts than in breeding roosts, but temperature gradients in these two types of roosts did not differ. In winter, hibernacula were warmer, and the temperature fluctuated less than in non-hibernacula. The relative humidities in summer roosts and hibernacula were nearly 100%. Disturbance levels were significantly higher in non-breeding roosts than in breeding roosts, and in non-hibernacula than in hibernacula. These results suggest that the Formosan leaf-nosed bats are selective of their roosts, but the pattern of their roost selection differs from those reported for bats of temperate regions. The reasons for such differences may be related to differences in body size, behavior, and reproductive strategy of the Formosan leaf-nosed bats living in a subtropical climate in Taiwan.  相似文献   

12.
We studied roost structure, modification, and availability in Lophostoma silvicolum (Phyllostomidae), an insectivorous gleaning bat, on Barro Colorado Island (BCI), Panamá. Collection of nest material beneath termitaria and infrared video filming indicated that males of L. silvicolum excavate and maintain cavities inside active termite nests. A binary logistic regression analysis showed that to be suitable as roosts, termite nests have to be larger than 30 cm in diameter and taller than 30 cm, well shaded, with few transecting branches, and freely accessible from below. Use of active termite nests as roosts may provide several benefits to L. silvicolum, including reduction of competition for roost sites with sympatric bat species, reduced parasite load and a suitable microclimate. A comparison of number of all termite nests in selected forest plots with number of termite nests that are potentially suited as bat roosts and number of termite nests that are actually used by bats suggests that L. silvicolum may not be roost‐limited on BCI in spite of its highly specialized roost choice.  相似文献   

13.
Social calls in bats have many functions, including mate attraction and maintaining contact during flight. Research suggests that social calls may also be used to transfer information about roosts, but no studies have yet demonstrated that calls are used to actively attract conspecifics to roosting locations. We document the social calls used by Spix''s disc-winged bat (Thyroptera tricolor) to actively recruit group members to roosts. In acoustic trials, we recorded two sets of calls; one from flying individuals termed ‘inquiry calls’, and another from roosting bats termed ‘response calls’. Inquiry calls were emitted by flying bats immediately upon release, and quickly (i.e. 178 ms) elicited production of response calls from roosting individuals. Most flying bats entered the roost when roosting individuals responded, while few bats entered the roost in the absence of a response. We argue that information transfer concerning roost location may facilitate sociality in T. tricolor, given the ephemeral nature of roosting structures used by this species.  相似文献   

14.
ABSTRACT In Arizona, USA, Allen's lappet-browed bat (Idionycteris phyllotis) forms maternity colonies in ponderosa pine (Pinus ponderosa) snags. There is little information on the roosting habitat of males. We used radiotelemetry to locate 16 maternity, 3 postlactating, and 2 bachelor roosts and combined data with unpublished data for maternity roosts (n = 11) located in 1993–1995. Most (96%) maternity roosts were in large-diameter ( ± SE: 64 ± 2.7 cm) ponderosa pine snags under sloughing bark. Models that best predicted the probability of a snag's use as a maternity roost indicated bats selected taller snags closer to forest roads than comparison snags. Maternity roosts averaged 11 bats per roost (SE = 2, n = 15; from exit counts) and were an average distance of 1.6 km from capture sites (SE = 0.3, n = 17). Bachelor roosts were in vertical sandstone cliff faces in pinyon-juniper (Pinus edulis-Juniperus spp.) woodlands approximately 12 km from capture sites; these and other capture records in Arizona indicated sexual segregation may have occurred during the maternity season. Of 11 maternity snag roosts located in 1993–1995, only one continued to function as a roost. Resource managers should maintain patches of large-diameter ponderosa pine snags with peeling bark to provide maternity roosting habitat for Allen's lappet-browed bat.  相似文献   

15.
Interspecific relationships such as mutualism and parasitism are major drivers of biodiversity. Because such interactions often comprise more than two species, ecological studies increasingly focus on complex multispecies systems. However, the spatial heterogeneity of multi-species interactions is often poorly understood. Here, we investigate the unusual interaction of a bat (Kerivoula hardwickii hardwickii) and two pitcher plant species (Nepenthes hemsleyana and N. bicalcarata) whose pitchers serve as roost for bats. Nepenthes hemsleyana offers roosts of higher quality, indicated by a more stable microclimate compared to N. bicalcarata but occurs at lower abundance and is less common than the latter. Whereas N. hemsleyana benefits from the roosting bats by gaining nitrogen from their feces, the bats’ interaction with N. bicalcarata seems to be commensal or even parasitic. Bats stayed longer in roosts of higher quality provided by N. hemsleyana and preferred them to pitchers of N. bicalcarata in a disturbance experiment. Moreover, bats roosting only in pitchers of N. hemsleyana had a higher body condition and were less infested with parasites compared to bats roosting in pitchers of N. bicalcarata. Our study shows how the local supply of roosts with different qualities affects the behavior and status of their inhabitants and—as a consequence—how the demand of the inhabitants can influence evolutionary adaptations of the roost providing species.  相似文献   

16.
We studied the deposition of pupae of the winged bat fly Trichobius sp. (caecus group; Diptera), an ectoparasite of Natalus stramineus (Chiroptera, Natalidae), in a natural cave in Tamaulipas, Mexico. For the first time, we show a strong spatial segregation of populations of a streblid bat fly at different stages of development. Using molecular techniques we were able to match developmental stages to adults. Only 5 pupae were present in the main bat roosts. The overwhelming majority occurred exclusively in the bat flyway passages at a considerable distance from roosting bats. Pupal density corresponded positively with the average flight height of bats in the cave passage. Taken together, observations suggest that these ectoparasites must actively seek out their hosts by moving onto passing or roosting bats. The scarceness of pupae in the main roost may be dictated by environmental constraints for their development. The estimated population of viable pupae far exceeds the population of imagoes on the bats, and predation on adults by spiders is common.  相似文献   

17.
A growing number of mammal species are recognized as heterothermic, capable of maintaining a high‐core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big‐eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day‐roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day‐roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context.  相似文献   

18.
19.
Although the use of modified roosts has been reported in more than 20 species of bats in the tropics, comparative studies of the roosting ecology of congeneric tent‐roosting species are notably lacking. In the Paleotropics, this unique behavior has been described in two species belonging to the genus, Cynopterus: C. sphinx and C. brachyotis. However, it is not known whether tent roosting is an essential component of their roosting ecology, or whether the behavior is found in other members of the genus. In this study we characterize the roosting ecology of four sympatric species of Cynopterus in peninsular Malaysia and use these data to address two main questions. (1) Do all four species use modified roosts and, in those that do, is tent‐roosting obligate or opportunistic? (2) Do species pairs overlap in roost preferences and roosting habitat and, if so, is there evidence for interspecific interactions in relation to these resources? We radio‐tracked bats at two floristically distinct sites and located a total of 249 roosts. Interspecific roost niche overlap was minimal at both sites and we found no evidence for interspecific competition for roost resources at the local level. Species differences in roosting ecology were defined primarily by spatial separation of roosting habitats and secondarily by within‐habitat differences in roost selection. Importantly, we found that although periodic use of modified roosts was a characteristic shared by all four species, most roosts were unmodified, indicating that tent roosting is a facultative behavior in Malaysian Cynopterus.  相似文献   

20.
Although roost choice in bats has been studied previously, little is known about how opposing roost colours affect the expression of torpor quantitatively. We quantified roost selection and thermoregulation in a captive Australian insectivorous bat, Nyctophilus gouldi (n=12) in winter when roosting in black and white coloured boxes using temperature-telemetry. We quantified how roost choice influences torpor expression when food was provided ad libitum or restricted in bats housed together in an outdoor aviary exposed to natural fluctuations of ambient temperature. Black box temperatures averaged 5.1 °C (maximum 7.5 °C) warmer than white boxes at their maximum daytime temperature. Bats fed ad libitum chose black boxes on most nights (92.9%) and on 100% of nights when food-restricted. All bats used torpor on all study days. However, bats fed ad libitum and roosting in black boxes used shorter torpor and spent more time normothermic/active at night than food-restricted bats and bats roosting in white boxes. Bats roosting in black boxes also rewarmed passively more often and to a higher skin temperature than those in white boxes. Our study suggests that N. gouldi fed ad libitum select warmer roosts in order to passively rewarm to a higher skin temperature and thus save energy required for active midday rewarming as well as to maintain a normothermic body temperature for longer periods at night. This study shows that colour should be considered when deploying bat boxes; black boxes are preferable for those bats that use passive rewarming, even in winter when food availability is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号