首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small integrin-binding ligand, N-linked glycoprotein (SIBLING) family is closely related to osteogenesis. Until recently, little was known about their existence in articular cartilage. In this study, we systematically evaluated the presence and distribution of four SIBLING family members in rat femoral head cartilage: dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). First, non-collagenous proteins were extracted and then separated by ion-exchange chromatography. Next, the protein extracts eluted by chromatography were analyzed by Stains-all staining and Western immunoblotting. IHC was used to assess the distribution of these four SIBLING family members in the femoral head cartilage. Both approaches showed that all the four SIBLING family members are expressed in the femoral head cartilage. IHC showed that SIBLING members are distributed in various locations throughout the articular cartilage. The NH2-terminal fragments of DMP1, BSP, and OPN are present in the cells and in the extracellular matrix, whereas the COOH-terminal fragment of DMP1 and the NH2-terminal fragment of DSPP are primarily intracellularly localized in the chondrocytes. The presence of the SIBLING family members in the rat femoral head cartilage suggests that they may play important roles in chondrogenesis. (J Histochem Cytochem 58:1033–1043, 2010)  相似文献   

2.
Summary In this study, the progenitor cells isolated from the human dental pulp were used to study the effects of ethylenediaminetetraacetic acid-soluble dentin extract (DE) on their differentiation and mineralization to better understand tissue injury and repair in the tooth. Mineralization of the matrix was increasingly evident at 14, 21, and 28 d after treatment with a mineralization supplement (MS) (ascorbic acid [AA], β-glycerophosphate [β-GP]) and MS+DE. Real-time polymerase chain reaction results showed type I collagen upregulation after the addition of MS+DE at 7 d. Alkaline phosphatase was downregulated after the mineralization became obvious at 14 d. Bone sialoprotein was shown to be upregulated in the mineralized cell groups at all time points and dentin sialophosphoprotein after 7 d. Core binding factor a 1 was upregulated by the treatment of MS and DE at 7, 14, and 21 d. These results indicated that the MS of AA, β-GP, and DE synergistically induced cell differentiation of pulp progenitor cells into odontoblast-like cells and induced in vitro mineralization.  相似文献   

3.
4.
Dentin matrix protein 1 (DMP 1) is an acidic phosphoprotein that has been postulated to play an important role in mineralized tissue formation. We have examined rat molar tooth germs by applying a high-resolution immunocytochemical approach with the purpose to identify the temporal and spatial localization of DMP 1 at the onset of dentinogenesis. Upper molar tooth germs of 2- to 3-day-old Wistar rats were fixed in a cacodylate-buffered 0.1% glutaraldehyde + 4% formaldehyde fixative, left unosmicated and embedded in LR White resin. The sections were incubated with a polyclonal DMP 1 antibody for postembedding colloidal gold immunolabeling and examined in a Jeol 1010 transmission electron microscope. The earliest localization of DMP 1 was in the Golgi region as well as in the nucleus of differentiating odontoblasts. When mineralization spread from matrix vesicles to the surrounding matrix, DMP 1 was extracellularly detected around the mineralizing globules. In the regions of fully mineralized mantle dentin, it was present in the mineralized regions, mainly around the peritubular dentin. The appearance of DMP 1 during early dentinogenesis implies a direct role for this protein in both odontoblast differentiation and matrix mineralization.  相似文献   

5.
Reparative dentin has a wide variety of manifestations ranging from a regular, tubular form to an irregular, atubular form. However, the characteristics of reparative dentin have not been clarified. This study hypothesized that the level of bone sialoprotein (BSP) expression will increase if the newly formed reparative dentin is bone-like but the dentin sialophosphoprotein (DSPP) level will decrease. In order to test this hypothesis, the expression of BSP and DSP was examined by immunohistochemistry and the expression of BSP was measured by in situ hybridization in an animal model. The pulps of 12 maxillary right first molars from twelve male rats were exposed and capped with MTA. In addition, in order to understand the role of transforming growth factor-beta 1 (TGF-β1) during reparative dentinogenesis, the expression of BSP and DSPP mRNA was analyzed by RT-PCR in a human dental pulp cell culture, and the transforming growth factor-beta 1 receptors (TβRI) and Smad 2/3 were examined by immunofluorescence in an animal model. DSP was expressed in the normal odontoblasts and odontoblast-like cells of the reparative dentin. Interestingly, BSP was strongly expressed in the odontoblast-like cells of reparative dentin. The level of the TβRI and Smad 2/3 proteins was higher in the reparative dentin than in the normal dentin. TGF-β1 up-regulated BSP in the human pulp cell cultures. This suggests that reparative dentin has both dentinogenic and osteogenic characteristics that are mediated by TGF-β1.  相似文献   

6.
7.
牙本质基质蛋白1(dentin matrix protein 1,DMP1)是一种高度磷酸化的偏酸性非胶原蛋白, 属于小整合素结合配体N端连接糖蛋白(small integrin-binding ligand, N-linked glycoprotein, SIBLINGs)家族.和SIBLINGs家族其它成员一样,DMP1基因定位于人类染色体4q21除存在于牙组织外,该蛋白还普遍分布于骨组织中.在骨组织与细胞中已发现4种DMP1的主要存在形式,即全长DMP1、57 kD C-DMP1、37 kD N-DMP1、DMP1-PG.它们的分布与功能均不相同,但对骨的正常形成均有重要意义. DMP1的氨基酸序列拥有大量的酸性结构域,携带负电荷,与钙离子有较强的结合能力.它在体外能够促进羟基磷灰石形成,并调控细胞分化,在体内参与硬组织的矿化过程.另外,DMP1的水解过程对其调控矿化的功能十分关键.人体内DMP1基因的突变可导致常染色体隐性低血磷性佝偻病.本文就近几年对DMP1基因结构与调控、蛋白结构与代谢、在骨组织与细胞中的分布及其对骨形成调控作用的研究进展作一综述.  相似文献   

8.
Recently, dentin sialophosphoprotein (DSPP) was found to be expressed in the mandibular condylar cartilage (MCC), but the possible roles of this molecule in the formation, growth, and maintenance of the cartilage are largely unclear. To analyze such roles, we examined Dspp null mice compared with wild-type mice to assess the consequences of Dspp deletion on the morphology and structure of the MCC. Our data showed that DSPP is expressed in the prechondroblastic, chondroblastic, hypertrophic layers of the MCC. Dspp null mice exhibited decreases in the amount of MCC, with reduced formation of articular and prechondroblastic layers in which progenitor cell proliferation levels were distinctly affected. The expression of extracellular matrix molecules, including biglycan and collagen II, IX, and X, was remarkably altered. The findings in this study indicate that continuous DSPP action is required for the growth and/or maintenance of the MCC.  相似文献   

9.
10.
Summary The localization of proteoglycans in the predentin of the rat incisor was investigated by ultrastructural histochemistry. Ruthenium red stained the cell coat of the odontoblasts as well as intracellular vesicles. There was also a staining of the extracellular matrix, but not of collagen fibers in the predentin. Treatment with the enzyme hyaluronidase prior to staining with ruthenium red abolished the staining of the vesicles and the extracellular matrix but not that of the cell coat. Bismuth nitrate and phosphotungstic acid gave similar staining of odontoblast vesicles and extracellular matrix. It is likely that the stained structures contain proteoglycans. The importance of these proteoglycans and their ultrastructural localization are discussed in relation to intracellular transport and the calcification process.  相似文献   

11.
    
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.  相似文献   

12.
牙本质涎磷蛋白(DSPP)的表达是细胞向成牙本质细胞分化的标志。试图分析人DSPP启动子及构建人DSPP启动子驱动的Lac Z基因表达的报告体系,从而方便快捷检测细胞是否向成牙本质细胞分化。为了建立能表达DSPP的细胞体系,分离了人牙胚间充质细胞,并用地塞米松诱导培养液进行诱导,结果显示,该诱导培养液能有效地诱导人牙胚间充质细胞DSPP基因的表达。利用双荧光素酶报告系统对4段人DSPP基因5′上游区域(-4 000-+54、-2 500-+54、-1 447-+54和-1 027-+54)进行分析,结果显示-2 500-+54区域的启动子活性最高。5′上游区从?2 500 bp延长到?4 000 bp时,启动子活性下降;5′上游区从-2 500 bp缩短至-1 447 bp时,启动子活性下降;再次将-1 447 bp缩短至-1 027 bp时,启动子活性进一步下降。结果暗示在-4 000 bp至-2 500 bp区域存在转录抑制元件,-2 500 bp至-1 027 bp区域存在转录激活元件。用-2 500-+54启动子区域和Lac Z基因构建ph DSPP-Lac Z慢病毒报告载体,并分别在人牙胚间充质细胞和永生化人牙胚间充质细胞系ih EDMC4上检测ph DSPP-Lac Z报告载体的功能,通过X-Gal染色,结果显示在2种细胞牙向分化过程中均可检测到Lac Z基因的表达。研究构建的ph DSPP-Lac Z慢病毒报告载体可为诱导人源细胞牙向分化、牙齿发育、牙齿再生工程等研究中DSPP的表达检测提供一种更加便捷的手段。  相似文献   

13.
14.
         下载免费PDF全文
The blood-brain barrier (BBB) is a tight boundary formed between endothelial cells and astrocytes, which separates and protects brain from most pathogens as well as neural toxins in circulation. However, detailed molecular players involved in formation of BBB are not completely known. Dentin matrix protein 1 (DMP1)-proteoglycan (PG), which is known to be involved in mineralization of bones and dentin, is also expressed in soft tissues including brain with unknown functions. In the present study, we reported that DMP1-PG was expressed in brain astrocytes and enriched in BBB units. The only glycosylation site of DMP1 is serine89 (S89) in the N-terminal domain of the protein in mouse. Mutant mice with DMP1 point mutations changing S89 to glycine (S89G), which completely eradicated glycosylation of the protein, demonstrated severe BBB disruption. Another breed of DMP1 mutant mice, which lacked the C-terminal domain of DMP1, manifested normal BBB function. The polarity of S89G-DMP1 astrocytes was disrupted and cell-cell adhesion was loosened. Through a battery of analyses, we found that DMP1 glycosylation was critically required for astrocyte maturation both in vitro and in vivo. S89G-DMP1 mutant astrocytes failed to express aquaporin 4 and had reduced laminin and ZO1 expression, which resulted in disruption of BBB. Interestingly, overexpression of wild-type DMP1-PG in mouse brain driven by the nestin promoter elevated laminin and ZO1 expression beyond wild type levels and could effectively resisted intravenous mannitol-induced BBB reversible opening. Taken together, our study not only revealed a novel element, i.e., DMP1-PG, that regulated BBB formation, but also assigned a new function to DMP1-PG.  相似文献   

15.
Mutations in FAM20C were recently identified as the cause of lethal osteosclerotic bone dysplasia, which highlighted the important role of this molecule in biomineralization. No systematic studies have been performed to evaluate the expression pattern of this relatively new molecule in the developmental processes of bone and tooth. In the present study, we analyzed in detail the expression profile of FAM20C during osteogenesis and odontogenesis using ISH and IHC approaches. The specimens analyzed were mouse tissues spanning embryonic day 13.5 (E13.5) to postnatal 8 weeks. The earliest presence of FAM20C was observed at E14.5. During osteogenesis, FAM20C mRNA was detected in the chondrocytes and osteoblasts of the long bone, whereas its protein was observed in the extracellular matrix (ECM) of bone and in the cytoplasm of the chondrocytes, osteoblasts, and osteocytes. During odontogenesis, FAM20C mRNA was detected in the ameloblasts, odontoblasts, cementoblasts, and periodontal ligament fibroblasts, whereas its protein was observed in the matrices of dentin, enamel, and alveolar bone and in the cytoplasm of the aforementioned cells. The temporospatial expression profile revealed in this study indicates that FAM20C is an ECM protein that may play an important role in controlling the mineralization of bone and tooth. (J Histochem Cytochem 58:957–967, 2010)  相似文献   

16.
Mammalian teeth are composed of hydroxyapatite crystals that are embedded in a rich extracellular matrix. This matrix is produced by only two cell types, the mesenchymal odontoblasts and the ectodermal ameloblasts. Ameloblasts secrete the enamel proteins amelogenin, ameloblastin, enamelin and amelotin. Odontoblasts secrete collagen type I and several calcium-binding phosphoproteins including dentin sialophosphoprotein, dentin matrix protein, bone sialoprotein and osteopontin. The latter four proteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) because they display similar gene structures and because they contain an RGD tripeptide sequence that binds to integrin receptors and thus mediates cell adhesion.We have prepared all the other tooth-specific proteins in recombinant form and examined whether they might also promote cell adhesion similar to the SIBLINGs. We found that only ameloblastin consistently mediated adhesion of osteoblastic and fibroblastic cells to plastic or titanium surfaces. The activity was dependent on the intact three-dimensional structure of ameloblastin and required de novo protein synthesis of the adhering cells. By deletion analysis and in vitro mutagenesis, the active site could be narrowed down to a sequence of 13 amino acid residues (VPIMDFADPQFPT) derived from exon 7 of the rat ameloblastin gene or exons 7-9 of the human gene. Kinetic studies and RNA interference experiments further demonstrated that this sequence does not directly bind to a cell surface receptor but that it interacts with cellular fibronectin, which in turn binds to integrin receptors.The identification of a fibronectin-binding domain in ameloblastin might permit interesting applications for dental implantology. Implants could be coated with peptides containing the active sequence, which in turn would recruit fibronectin from the patient's blood. The recruited fibronectin should then promote cell adhesion on the implant surface, thereby accelerating osseointegration of the implant.  相似文献   

17.
    
An approach to assay proteolytic activity in vivo by altering the subcellular localization of a labelled substrate was demonstrated. The assay included a protein shuttling between different cellular compartments and a site-specific recombinant protease. The shuttle protein used was the human immunodeficiency virus type 1 (HIV-1) Rev protein tandemly fused to the enhanced green fluorescent protein (EGFP) and the red fluorescent protein (RFP), while the protease was the site-specific protease VP24 from the herpes simplex virus type 1 (HSV-1). The fluorescent proteins in the Rev fusion protein were separated by a cleavage site specific for the VP24 protease. When co-expressed in COS-7 cells proteolysis was observed by fluorescence microscopy as a shift from a predominantly cytoplasmic localization of the fusion protein RevEGFP to a nuclear localization while the RFP part of the fusion protein remained in the cytoplasm. The cleavage of the fusion protein by VP24 was confirmed by Western blot analysis. The activity of VP24, when tagged N-terminally by the Myc-epitope, was found to be comparable to VP24. These results demonstrates that the activity and localization of a recombinantly expressed protease can be assessed by protease-mediated cleavage of fusion proteins containing a specific protease cleavage site.  相似文献   

18.
19.
    
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues. Mepe RNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis of Mepe null mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However, Mepe-/- molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression of Enam, Bsp, Dmp1, Dspp, and Opn by RT-PCR. In vitro Mepe overexpression in odontoblasts led to significant reductions in Dspp reporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix.  相似文献   

20.
    
Germ cells are essential for the propagation of individual species. Studies on germ cell development in mice highlight important biological paradigms. Beginning with their first appearance around embryonic day 7 (E7), germ cells undergo specific cellular changes at different stages of their embryonic and adult development. Germ cells migrate through the hind‐regions of the embryo to eventually home into the developing gonads. Further differentiation and development of germ cells differ in males and females. The processes involved in germ cell development and their eventual differentiation into sperm and oocytes have been under extensive investigation in recent years. Studies on germ cells have shed light on the cellular and molecular processes involved in their specification, migration, proliferation, death, and differentiation. These studies have also revealed much about maintenance of stem cell populations and fertility. Here we review the genetic tools that are at present available to study germ cells in the mouse. genesis 47:617–627, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号