首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change and increasing habitat loss greatly impact species survival, requiring range shifts, phenotypic plasticity and/or evolutionary change for long‐term persistence, which may not readily occur unaided in threatened species. Therefore, defining conservation actions requires a detailed assessment of evolutionary factors. Existing genetic diversity needs to be thoroughly evaluated and spatially mapped to define conservation units (CUs) in an evolutionary context, and we address that here. We also propose a multidisciplinary approach to determine corridors and functional connectivity between CUs by including genetic diversity in the modelling while controlling for isolation by distance and phylogeographic history. We evaluate our approach on a Near Threatened Iberian endemic rodent by analysing genotyping‐by‐sequencing (GBS) genomic data from 107 Cabrera voles (Microtus cabrerae), screening the entire species distribution to define categories of CUs and their connectivity: We defined six management units (MUs) which can be grouped into four evolutionarily significant units (ESUs) and three (putatively) adaptive units (AUs). We demonstrate that the three different categories of CU can be objectively defined using genomic data, and their characteristics and connectivity can inform conservation decision‐making. In particular, we show that connectivity of the Cabrera vole is very limited in eastern Iberia and that the pre‐Pyrenean and part of the Betic geographic nuclei contribute the most to the species genetic diversity. We argue that a multidisciplinary framework for CU definition is essential and that this framework needs a strong evolutionary basis.  相似文献   

2.
Genetic markers are widely used to define and manage populations of threatened species based on the notion that populations with unique lineages of mtDNA and well‐differentiated nuclear marker frequencies should be treated separately. However, a danger of this approach is that genetic uniqueness might be emphasized at the cost of genetic diversity, which is essential for adaptation and is potentially boosted by mixing geographically separate populations. Here, we re‐explore the issue of defining management units, focussing on a detailed study of Galaxiella pusilla, a small freshwater fish of national conservation significance in Australia. Using a combination of microsatellite and mitochondrial markers, 51 populations across the species range were surveyed for genetic structure and diversity. We found an inverse relationship between genetic differentiation and genetic diversity, highlighting a long‐term risk of deliberate isolation of G. pusilla populations based on protection of unique lineages. Instead, we adopt a method for identifying genetic management units that takes into consideration both uniqueness and genetic variation. This produced a management framework to guide future translocation and re‐introduction efforts for G. pusilla, which contrasted to the framework based on a more traditional approach that may overlook important genetic variation in populations.  相似文献   

3.
Having a comprehensive understanding of population structure, genetic differentiation and demographic history is important for the conservation and management of threatened species. High‐throughput sequencing (HTS) provides exciting opportunities to address a wide range of factors for conservation genetics. Here, we generated HTS data and identified 266,884 high‐quality single nucleotide polymorphisms from 82 individuals of Cupressus chengiana, to assess population genomics across the species' full range, comprising the Daduhe River (DDH), Minjiang River (MJR) and Bailongjiang River (BLJ) catchments in western China. admixture , principal components analysis and phylogenetic analyses indicated that each region contains a distinct lineage, with high levels of differentiation between them (DDH, MJR and BLJ lineages). MJR was newly distinguished compared to previous surveys, and evidence including coalescent simulations supported a hybrid origin of MJR during the Quaternary. Each of these three lineages should be recognized as an evolutionarily significant unit (ESU), due to isolation, differing genetic adaptations and different demographic history. Currently, each ESU faces distinct threats, and will require different conservation strategies. Our work shows that population genomic approaches using HTS can reconstruct the complex evolutionary history of threatened species in mountainous regions, and hence inform conservation efforts, and contribute to the understanding of high biodiversity in mountains.  相似文献   

4.
5.
Species and their geographical distributions, tabulated either from regional faunal and floral monographs or directly from natural history collections, often are used as the basic units of analysis by ecologists and biogeographers. It has been argued that in order for species to be operationally useful units for evolutionary and ecological studies, they need to be recognizable and identifiable as distinct entities. A growing body of molecular phylogeographic studies demonstrates that currently recognized species often are unreliable in their approximation of fundamental evolutionary and geographical units, leading, for example, to proposed usage of molecular-based evolutionarily significant units in lieu of species in conservation biology. We argue that ecologists and bio- geographers should likewise employ evolutionarily significant units as basic units of analysis when evidence clearly indicates that a formally recognized species either fails to convey important evolutionary and geographical information (i.e. includes multiple geographically distinct evolu- tionary lineages) or fails to delineate a natural entity (i.e. does not represent a monophyletic set of populations). We demonstrate the limitations of current species as evolutionary, geographical, and conservation units within the ecologically well-studied North American desert rodent assemblage. We suggest that biotic surveys should be designed to allow the efficient assembly and dissemination of molecular phylogeographic data from ecologically and biogeographically representative systems.  相似文献   

6.
Eleven microsatellites were isolated from the vairone Leuciscus souffia (Risso 1826), an endangered fish that inhabits river systems in and around the Alps in Europe. The level of genetic diversity was assessed in 29 individuals of the subspecies L. s. souffia, and their variability was further estimated in seven individuals of a different subspecies, L. s. muticellus. Eight of these microsatellite loci were also applied to seven closely related cyprinid species. Availability of the reported microsatellite loci will facilitate the investigation of population genetic structure of these species with applications for the development of conservation strategies and phylogeographical approaches.  相似文献   

7.
The Gran Chaco is the largest continuous region of the South American dry forest, spanning Argentina, Paraguay, Bolivia, and Brazil. Prosopis rubriflora and Prosopis ruscifolia are typical tree species of chaquenian area forests, which have been subjected to continuous fragmentation caused by cattle raising. This study evaluated P. rubriflora and P. ruscifolia in areas with varying levels of disturbance. We investigated the contemporary genetic diversities of both species in areas with distinct anthropogenic disturbances. Even with a lower heterozygote frequency, disturbed areas can provide important storage for alleles, allowing the maintenance of diversity. The genetic diversity of P. rubriflora was surprisingly similar to that of P. ruscifolia (H= 0.59 and He = 0.60, respectively) even with very different distribution ranges of both species. However, P. ruscifolia exhibited a higher intrapopulation fixation index than P. rubriflora. P. rubriflora showed evidence of bottlenecking in 64% of the sampled areas, while P. ruscifolia showed such evidence in 36% of the sampled areas. Additionally, P. rubriflora had two distinct populations due to its disjunctive geographic distribution, whereas P. ruscifolia had a single population that exhibited few signs of population structure in some areas, possibly due to the main pollinators presenting a short range of dispersion. Our results suggest that 42 Chaco areas should be conserved to retain the minimum of 500 individuals necessary to maintain genetic diversity for 100–1,000 generations. This study improves our understanding of these two Prosopis species and provides information for the conservation of their genetic diversities.  相似文献   

8.
9.
With climate warming, the ranges of many boreal species are expected to shift northward and to fragment in southern peripheral ranges. To understand the conservation implications of losing southern populations, we examined range‐wide genetic diversity of the snowshoe hare (Lepus americanus), an important prey species that drives boreal ecosystem dynamics. We analysed microsatellite (8 loci) and mitochondrial DNA sequence (cytochrome b and control region) variation in almost 1000 snowshoe hares. A hierarchical structure analysis of the microsatellite data suggests initial subdivision in two groups, Boreal and southwestern. The southwestern group further splits into Greater Pacific Northwest and U.S. Rockies. The genealogical information retrieved from mtDNA is congruent with the three highly differentiated and divergent groups of snowshoe hares. These groups can correspond with evolutionarily significant units that might have evolved in separate refugia south and east of the Pleistocene ice sheets. Genetic diversity was highest at mid‐latitudes of the species' range, and genetic uniqueness was greatest in southern populations, consistent with substructuring inferred from both mtDNA and microsatellite analyses at finer levels of analysis. Surprisingly, snowshoe hares in the Greater Pacific Northwest mtDNA lineage were more closely related to black‐tailed jackrabbits (Lepus californicus) than to other snowshoe hares, which may result from secondary introgression or shared ancestral polymorphism. Given the genetic distinctiveness of southern populations and minimal gene flow with their northern neighbours, fragmentation and loss of southern boreal habitats could mean loss of many unique alleles and reduced evolutionary potential.  相似文献   

10.
11.
12.
As remnant vegetation covers <15% of the Australian sheep‐wheat belt, it is important to identify conservation strategies suitable for use in agricultural landscapes. Tree lines are widespread ecological structures in rural areas, and are now the subject of government subsidy schemes in New South Wales. However, the contribution of tree lines to biodiversity conservation is poorly understood. To identify the conservation value of tree lines, the bird communities in 36 tree lines in Cowra Shire, New South Wales, were surveyed 4 times each. The results demonstrated that tree lines were used by a large number of species, six of which were threatened. Different taxa were associated with different physical tree line attributes, with tree line age an important predictor of species occurrence. While mature tree lines tended to support more species, as was reflected in higher Shannon Diversity Index scores, they also harboured relatively more introduced species and nest predators, while young tree lines provided the best habitat for threatened species. However, these tree lines will mature, and as they do so they will provide increasingly suitable habitat for the hyperaggressive native honeyeater, the Noisy Miner (Manorina melanocephala), and introduced species. Therefore, tree lines in agricultural landscapes may only be serving an important role for conservation on short time scales, and the suite of threatened species young tree lines currently support appear likely to decline further in the future.  相似文献   

13.
AIMS: This study was designed to compare levels of genetic variation and its partitioning in three related species of Antirrhinum, A. subbaeticum, A. pertegasii and A. pulverulentum, and to check the hypothesis that species with small total population size have lower levels of genetic variability than those with bigger ones. This information should contribute to the development of conservation strategies of rare endemic species of Antirrhinum. METHODS: One hundred and seventy-seven plants were screened for variability at 14 allozyme loci by means of horizontal starch gel. Parameters of genetic diversity, and its partitioning, were calculated. An indirect estimate of gene flow was based on the equation: Nm = (1 - GST)/4GST. KEY RESULTS: Genetic variabilities in A. subbaeticum and A. pertegasii were found to be the lowest known for the genus, the within-population genetic diversity being correlated with population size in both species. The distribution of genetic diversity is strikingly different among species, with 85 % of the total variation distributed among populations in A. subbaeticum, 6 % in A. pertegasii and 23 % in A. pulverulentum. Estimated levels of gene flow were negligible for A. subbaeticum (0.04), high for A. pertegasii (3.92), and substantial for A. pulverulentum (0.83). Genetic and geographic distances were negatively correlated in A. pertegasii, whereas no significant correlation was found in the other two species. CONCLUSIONS: Levels of total genetic diversity agree with the hypothesis that species with small total population size have lower levels of genetic variability than those with bigger ones. Strategies for the conservation of the species are recommended, such as preservation of natural populations and avoidance of possible causes of threat, as well as ex situ preservation of seeds, reinforcement of small populations of A. subbaeticum with plants or seeds from the same population, and avoidance of translocations among populations.  相似文献   

14.
Italian freshwaters are highly biodiverse, with species present including the native fishes Barbus plebejus and Barbus tyberinus that are threatened by habitat alteration, fish stocking and invasive fishes, especially European barbel Barbus barbus. In central Italy, native fluvio‐lacustrine barbels are mainly allopatric and so provide an excellent natural system to evaluate the permeability of the Apennine Mountains. Here, the morphologic and genetic distinctiveness was determined for 611 Barbus fishes collected along the Padany–Venetian (Adriatic basins; PV) and Tuscany–Latium (Tyrrhenian basins; TL) districts. Analyses of morphological traits and mitochondrial DNA sequence data explored the natural and anthropogenic factors that have shaped their distribution ranges. Over 100 alien B. barbus were recorded in the Tiber basin (TL district) and Metauro basin (PV district). Comparisons of genetic and morphometric data revealed that morphometric data could identify alien B. barbus from native Barbus, but could not differentiate between B. tyberinus and B. plebejus. Genetic analyses revealed ~50 D‐loop mtDNA haplotypes and identified a distinct Barbus lineage present only in the Vomano River at the southern boundary of PV district. Demographic expansion and molecular variance analyses revealed a lack of geographic structuring across the sampling regions. While the contemporary B. plebejus distribution has been driven primarily by anthropogenic fish translocations, the dispersal of B. tyberinus has been via natural dispersion, including their crossing of the Apennine Mountains via temporary river connectivity. The results also revealed that the Barbus fishes of the mid‐Adriatic region of Europe have a complex pattern of local endemism. To conserve these patterns of genetic uniqueness, especially in the mid‐Adriatic basins, Barbus fishes should be managed by treating them as unique evolutionary units and ceasing translocations of all Barbus fishes between river basins.  相似文献   

15.
16.
We studied the distribution, size structure, growth, and diet of the freshwater prosobranch Melanopsis etrusca in experimental and natural population samples. This snail is endemic to isolated headwaters of thermal springs in central Italy. In recent times, several anthropogenic pressures such as water extraction and stream contamination have caused population declines and local extinctions of M. etrusca. Consequently, this species was included on the IUCN Red List of Threatened Species. The streams inhabited by M. etrusca had oligohaline waters; however, some physicochemical variability existed among sites. We found that the two variables most directly related to the patterns of distribution and life history of M. etrusca were water pH and temperature. In particular, individual growth was faster in streams with water temperatures constantly >30°C, which was reflected by a shorter life cycle than in cooler streams (13°–26°C), where snails showed a seasonal pattern of growth. Finally, we observed that individuals in a population that is exposed to extreme temperatures (>35°C) performed a peculiar behavior, spending long periods outside the water. We also found that the diet of M. etrusca reflected the local composition of the periphytic community and was dominated by macrophyte fragments. Our data suggest that heat‐adapted populations of M. etrusca hold the greatest potential for recolonization after collapse events. From a conservation perspective, reintroduction programs could be useful to avoid local extinction or bottleneck effects but at the risk of the loss of evolutionary innovations that may have emerged at the population level.  相似文献   

17.
18.
Species richness and similarity in metazoan parasite communities of fishes can be influenced by several biotic (age, body size, vagility, feeding and social behavior, among others), and local abiotic (temperature, salinity, etc.) factors. The parasite communities of three species of Oligoplites, marine fishes from the Pacific coast of Mexico, were quantified and analyzed. Four hundred sixty‐eight leatherjackets (O. altus, n=94; O. saurus, n=260; and Orefulgens, n=114) were collected from February 2016 to June 2017 from five locations. Twenty‐eight species of metazoan parasites were recovered and identified: four species of Monogenea (adults), nine of Digenea (seven adults and two metacercariae); two of Cestoda (larvae); four of Nematoda (two adults and two larvae); four of Acanthocephala (two adults, one juvenile, and one cystacanth); four of Copepoda; and one Pentastomida (larvae). At the component community level, species richness ranged from 9 in O. saurus to 19 in O. altus. Different species of helminth dominated the component communities of each species of host. Community composition and species richness of parasites differed among the three species of host, locations, and sampling years. Host feeding behavior, body size, and vagility had the most influence on these differences.  相似文献   

19.
Cymbula nigra is the largest limpet in the Mediterranean. It has been listed since 1993, as an ‘endangered species’. Its historical range in the Mediterranean includes the southern Spanish, the Moroccan and the Algerian coasts. Recent observations have confirmed its proliferation in southern Spain and its progression along the European and North African Mediterranean coasts. Field surveys carried out along the Tunisian coasts during winter 2011 revealed the presence of this species in the Gulf of Tunis and the Cap Bon. The finding of C. nigra represents a range extension possibly enhanced by the current global warming, as it is a ‘warm‐water species’. The absence of records in previous surveys to the same sampling sites (2006–2007), together with the small sizes recorded in 2011, confirms the recent installation of the species. The limpet was recorded in areas spared of pollution, characterized by a predominant influence of the Atlantic current, and also showed a preference for steep cliffs exposed to strong waves. This is the first population study of this endangered gastropod outside of its original range of distribution. The determination of the ecological characteristics of newly colonized habitats might serve as a starting point for the establishment of appropriate recommendations for its conservation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号