首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of fragment size, isolation and habitat diversity in the conservation of spider assemblages living in fragmented landscape were studied in dry sandy grasslands (East Hungary, Nyírség). Spiders were collected using pitfall traps at eight dry grassland fragments from 2001 to 2009 from March to October fortnightly. We tested the rules of island biogeography, which suggest that the species richness increases with the size and decreases with the isolation of fragments. The habitat diversity is an important factor for species richness, since large areas usually have more habitats; therefore, the number of species may be higher in these areas. During the 9-year study period, altogether 10,544 individuals belonging to 106 species were collected. Contradicting the classical theory, we found a significant negative relationship between the total number of spider species and the grassland size, while the ratio of sandy grassland specialist spider species increased with fragment size. The relationship between the ratio of generalist species and the fragment size was not significant. The overall species richness and the isolation of studied grasslands did not show a significant relationship. The ratio of sandy grassland specialist species decreased, while the ratio of generalist species increased with the increasing of isolation. The habitat diversity did not show any effect on spider species richness. We concluded that to conserve the habitat specialist species it is recommended to preserve the large and least isolated grassland fragments, furthermore to increase the size of small fragments with the restoration of the adjacent croplands.  相似文献   

2.
Species diversity depends on, often interfering, multiple ecological drivers. Comprehensive approaches are hence needed to understand the mechanisms determining species diversity. In this study, we analysed the impact of vegetation structure, soil properties and fragmentation on the plant species diversity of remnant calcareous grasslands, therefore, in a comparative approach.We determined plant species diversity of 18 calcareous grasslands in south eastern Germany including all species and grassland specialists separately. Furthermore, we analysed the spatial structure of the grasslands as a result of fragmentation during the last 150 years (habitat area, distance to the nearest calcareous grassland and connectivity in 1830 and 2013). We also collected data concerning the vegetation structure (height of the vegetation, cover of bare soil, grass and litter) and the soil properties (content of phosphorous and potassium, ratio of carbon and nitrogen) of the grassland patches. Data were analysed using Bayesian multiple regressions.We observed a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. In the Bayesian multiple regressions the species diversity of the studied grasslands depended negatively on cover of litter and to a lower degree on the distance to the nearest calcareous grassland in 2013, whereas soil properties had no significant impact.Our study supports the observation that vegetation structure, which strongly depends on land use, is often more important for the species richness of calcareous grasslands than fragmentation or soil properties. Even small and isolated grasslands may, therefore, contribute significantly to the conservation of species diversity, when they are still grazed.  相似文献   

3.
As a consequence of agricultural intensification and habitat fragmentation since the mid-20th century, biological diversity has declined considerably throughout the world, particularly in Europe. We assessed how habitat and landscape-scale heterogeneity, such as variation in fragment size (small vs. large) and landscape configuration (measured as connectivity index), affect plant and arthropod diversity. We focused on arthropods with different feeding behaviour and mobility, spiders (predators, moderate dispersal), true bugs (mainly herbivores and omnivores with moderate dispersal), wild bees (pollinators with good dispersal abilities), and wasps (pollinators, omnivores with good dispersal abilities). We studied 60 dry grassland fragments in the same region (Hungarian Great Plain); 30 fragments were represented by the grassland component of forest-steppe stands, and 30 were situated on burial mounds (kurgans). Forest-steppes are mosaics of dry grasslands with small forests in a matrix of plantation forests. Kurgans are ancient burial mounds with moderately disturbed grasslands surrounded by agricultural fields. The size of fragments ranged between 0.16–6.88 ha (small: 0.16–0.48 ha, large: 0.93–6.88 ha) for forest-steppes and 0.01–0.44 ha (small: 0.01–0.10 ha and large: 0.20–0.44 ha) for kurgans. Fragments also represented an isolation gradient from almost cleared and homogenous landscapes, to landscapes with relatively high compositional heterogeneity. Fragment size, connectivity, and their interaction affected specialist and generalist species abundances of forest-steppes and kurgans. Large fragments had higher species richness of ground-dwelling spiders, and the effect of connectivity was more strongly positive for specialist arthropods and more strongly negative for generalists in large than in small fragments. However, we also found a strong positive impact of connectivity for generalist plants in small kurgans in contrast to larger ones. We conclude that besides the well-known effect of enhancing habitat quality, increasing connectivity between fragments by restoring natural and semi-natural habitat patches would help to maintain grassland biodiversity.  相似文献   

4.
  • Populations of heterostylous plant species are ideally composed of equal frequencies of two (distylous) or three (tristylous) morphologically different floral morphs. Intra-morph incompatibility helps to avoid inbreeding and to maintain genetic diversity, supporting plant fitness and long-term viability. Habitat fragmentation can lead to skewed morph ratios and thereby reduce the abundance of compatible mates. This, in turn, can result in a loss of genetic diversity. We tested whether the genetic diversity of heterostylous plants is affected by morph ratio bias using populations of the distylous grassland plant Primula veris in recently fragmented grasslands.
  • We recorded morph frequencies and population sizes in 30 study populations of P. veris on two Estonian islands characterised by different degrees of habitat fragmentation. Examining variation of thousands of single nucleotide polymorphisms (SNPs) and heterostyly-specific genetic markers, we quantified overall and morph-specific genetic diversity and differentiation in these populations.
  • Morph frequencies deviated more in smaller populations. Skewed morph ratios had a negative effect on the genetic diversity of P. veris in more fragmented grasslands. In the populations of better-connected grassland systems, genetic differentiation among S-morphs was higher than among L-morphs.
  • Our study shows that deviations from morph balance are stronger in small populations and have a negative impact on the genetic diversity of the distylous plant P. veris. Together with the direct negative effects of habitat loss and decreased population size on the genetic diversity of plants, morph ratio bias may intensify the process of genetic erosion, thus exacerbating the local extinction of heterostylous species.
  相似文献   

5.
Pimelea spinescens is a critically endangered species of the temperate grasslands of southeastern Australia. Two subspecies are recognised. Subspecies, P. spinescens subsp. spinescens, formerly common and widespread, is found in isolated remnants of previously extensive grasslands. The second subspecies, subsp. pubiflora, is thought to have been historically rare with only two geographically-isolated extant populations. The grassland communities exist now as fragmented remnants representing <1 % of their extent prior to European settlement in the early 1800s. Conservation management strategies for species in these critically endangered ecosystems rely on an understanding of genetic diversity and population structure to ensure long-term evolutionary potential. We used chloroplast DNA (cpDNA) and microsatellite markers to examine the population genetic structure of both subspecies. Analysis of cpDNA revealed 14 haplotypes with high divergence between the single haplotype found in subsp. pubiflora and most remaining haplotypes restricted to subsp. spinescens. Microsatellites also indicated high genetic differentiation between subspecies but little evidence of sub-structuring within either subspecies. Results suggest that seed dispersal has not been as limited as previously thought. In this fragmented habitat, a lack of genetic structure suggests buffers to genetic erosion, with current patterns reflecting genetic diversity prior to fragmentation. Plant longevity and the presence of seed banks may contribute to the maintenance of these patterns, resulting in a lag between fragmentation and genetic erosion. Whilst factors such as longevity and seed banks may be preserving historic genetic diversity, management is required to ensure the maintenance of this diversity into the future.  相似文献   

6.
Positive species–genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non‐neutral mechanisms have not been explored. Here, we investigate the impact of non‐neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species–genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species–genetic diversity relationships.  相似文献   

7.
Fragmentation of grasslands and forests is considered a major threat to biodiversity. In the case of plants, the effect of fragmentation or landscape context is still unclear and published results are divergent. One explanation for this divergence is the slow response of long‐lived plants, creating an extinction debt. However, this has not been empirically confirmed. In this study, data were compiled from broad‐scale studies of grasslands from throughout the world that relate plant diversity to fragmentation effects. Only seven studies from northern Europe, out of a total 61, gave any information on actual habitat fragmentation in time and space. In landscapes with >10% grassland remaining, present‐day species richness was related to past landscape or habitat pattern. In landscapes with <10% grassland remaining, in contrast, plant species richness was more related to contemporary landscape or habitat pattern. Studies from landscapes with >10% grassland remaining supported the concept of an extinction debt, while studies from more fragmented landscapes did not provide any evidence of an extinction debt. In order to make generalisations about historical legacies on species diversity in grasslands it is important to consider a range of highly transformed landscapes, and not only landscapes with a high amount of grassland remaining.  相似文献   

8.
Habitat fragmentation is known to cause genetic differentiation between small populations of rare species and decrease genetic variation within such populations. However, common species with recently fragmented populations have rarely been studied in this context. We investigated genetic variation and its relationship to population size and geographical isolation of populations of the common plant species, Lychnis flos-cuculi L., in fragmented fen grasslands. We analysed 467 plants from 28 L. flos-cuculi populations of different sizes (60 000-54 000 flowering individuals) in northeastern Switzerland using seven polymorphic microsatellite loci. Genetic differentiation between populations is small (F(ST) = 0.022; amova; P < 0.001), suggesting that gene flow among populations is still high or that habitat fragmentation is too recent to result in pronounced differentiation. Observed heterozygosity (H(O) = 0.44) significantly deviates from Hardy-Weinberg equilibrium, and within-population inbreeding coefficient F(IS) is high (0.30-0.59), indicating a mixed mating breeding system with substantial inbreeding in L. flos-cuculi. Gene diversity is the only measure of genetic variation which decreased with decreasing population size (R = 0.42; P < 0.05). While our results do not indicate pronounced effects of habitat fragmentation on genetic variation in the still common L. flos-cuculi, the lower gene diversity of smaller populations suggests that the species is not entirely unaffected.  相似文献   

9.
Calcareous grasslands in Central Europe harbour a high diversity of plant and animal species. However, as man-made habitats, they need to be managed in order to maintain high species diversity. Conservation efforts often aim at reintroducing historical management regimes, such as regular grazing or mowing. Despite such efforts, the diversity and number of species of calcareous grasslands is still decreasing. We propose that, besides fragmentation and eutrophication, a lack of structural heterogeneity within and around calcareous grasslands as created by historic management is causing species loss as well. Here, we review the literature on the history of calcareous grassland management in northern Switzerland, the heterogeneity that it created and the relevance of this heterogeneity for biodiversity at three spatial scales: (1) within grasslands, (2) in their close surroundings and (3) at the landscape scale. Considering that historic management has created heterogeneity at all three scales and that many species do indeed depend on this structural diversity, we conclude that in order to conserve the full range of biodiversity associated with calcareous grasslands, conservation management should aim at increasing heterogeneity in, around, and between grasslands.  相似文献   

10.
Agriculture intensification has drastically altered farmland mosaics, while semi-natural grasslands have been considerably reduced and fragmented. Bird declines in northern temperate latitudes are attributed to habitat loss and degradation in farmed landscapes. Conversely, landscape-modification effects on grassland/farmland bird communities are less studied in the South American temperate grasslands. We investigated how bird communities were influenced by landscape characteristics in the Rolling Pampa (Argentina). We sampled bird communities in 356 landscapes of 1-km radius that varied in cover and configuration of pastureland, flooding grassland and cropland. Using generalized linear models, we explored the relationship between both bird species richness and abundance, and landscape structure. Analyses were carried out for all species, and open-habitat, grassland and aquatic species. Pasture area was far the most important factor, followed by landscape composition, in predicting species richness and abundance, irrespective of specific habitat preferences, followed by partially-flooded grassland cover and its mean shape index. Grassland fragmentation did not affect species richness or abundance. When comparing the effects of landscape variables on bird richness and abundance (using mean model coefficients), pasture and grassland area effects were on average more than four times greater than those of compositional heterogeneity, and about ten times greater than shape effects. To conserve species-rich bird communities persisting in Rolling Pampa farmland, we recommend the preservation of pasture and grassland habitats, irrespective of their fragmentation level, in intensively managed farmland mosaics.  相似文献   

11.
An increasing number of studies are simultaneously investigating species diversity (SD) and genetic diversity (GD) in the same systems, looking for ‘species– genetic diversity correlations’ (SGDCs). From negative to positive SGDCs have been reported, but studies have generally not quantified the processes underlying these correlations. They were also mostly conducted at large biogeographical scales or in recently degraded habitats. Such correlations have not been looked for in natural networks of connected habitat fragments (metacommunities), and the underlying processes remain elusive in most systems. We investigated these issues by studying freshwater snails in a pond network in Guadeloupe (Lesser Antilles). We recorded SD and habitat characteristics in 232 ponds and assessed GD in 75 populations of two species. Strongly significant and positive SGDCs were detected in both species. Based on a decomposition of SGDC as a function of variance–covariance of habitat characteristics, we showed that connectivity (opportunity of water flow between a site and the nearest watershed during the rainy season) has the strongest contribution on SGDCs. More connective sites received both more alleles and more species through immigration resulting in both higher GD and higher SD. Other habitat characteristics did not contribute, or contributed negatively, to SGDCs. This is true of the desiccation frequency of ponds during the dry season, presumably because species markedly differ in their ability to tolerate desiccation. Our study shows that variation in environmental characteristics of habitat patches can promote SGDCs at metacommunity scale when the studied species respond homogeneously to these environmental characteristics.  相似文献   

12.
Abstract. Plants associated with traditional agricultural landscapes in northern Europe and Scandinavia are subjected to drastic habitat fragmentation. In this paper we discuss species response to fragmentation, against a background of vegetation and land‐use history. Recent evidence suggests that grassland‐forest mosaics have been prevalent long before the onset of human agriculture. We suggest that the creation of infield meadows and outland grazing (during the Iron Age) increased the amount and spatial predictability of grasslands, resulting in plant communities with exceptionally high species densities. Thus, distribution of plant species in the present‐day landscape reflects historical land‐use. This holds also when traditional management has ceased, due to a slow response by many species to abandonment and fragmentation. The distribution patterns are thus not in equilibrium with the present habitat distribution. Fragmentation influences remaining semi‐natural grasslands such that species density is likely to decline as a result of local extinctions and invasion by habitat generalists. However, species that for a long time have been subjected to changing mosaic landscapes may be more resistant to fragmentation than is usually believed. Conservation should focus not only on ‘hot‐spots’ with high species richness, but also consider species dynamics in a landscape context.  相似文献   

13.
Patch size is known to affect biodiversity in fragmented landscapes, but is usually examined in systems where the surrounding matrix habitat is unfavourable. We examined beetle diversity in a floodplain ecosystem that is characterised by naturally occurring grassland patches within a dominant matrix of contrasting yet habitable forest. We asked whether differences in the beetle assemblage between grassland and forest vegetation depended on the area of the grassland patch, which is a function of its flooding frequency and duration: smaller grasslands tend to be higher on the floodplain and are flooded less often and for shorter periods than larger grasslands. We found a negative relationship between grassland area and beetle abundance and species richness, and a positive relationship between grassland area and compositional dissimilarity from the surrounding forest. As expected, we found an overall difference in composition between forest and grassland assemblages, with five beetle species more common in the grasslands. Our study indicates that floodplain grasslands not only support beetle assemblages that are distinct from the surrounding forest, but that assemblages from the larger grasslands are compositionally more distinct than those from smaller grasslands. A likely cause of this pattern is the reduced edge effects and greater environmental contrast between forest and large grasslands that may be exposed to greater variation in local climate. Ongoing changes to flood regimes and potential encroachment of forest plants may decrease grassland area in the future, which may reduce spatial heterogeneity in the insect community in this unique floodplain ecosystem.  相似文献   

14.
This paper evaluates the long‐term effect of an ecological network of calcareous grasslands, a habitat type that experienced dramatic habitat loss and fragmentation during the 20th century, on species richness of habitat specialist plants. Calcareous grasslands are of special conservation concern as the habitat type with the highest diversity in plant and invertebrate species in central Europe. A baseline survey in 1989 established complete vascular plant species lists for all 62 previously abandoned calcareous grassland patches in the study area and assessed the presence of 48 habitat specialist plant species. An ecological network was initiated in 1989 to reconnect these patches with existing grazed pastures (core areas) through large flock sheep herding where feasible, as sheep are thought to be the primary dispersal vectors for calcareous grassland plants. An evaluation survey in 2009 showed significant increase in species richness of habitat specialist plants in patches reconnected by sheep herding, indicating successful colonizations by habitat specialist plants, while ungrazed patches showed no significant change. Observed increase in species richness between 1989 and 2009 was related to connectivity by sheep herding and the presence of a diversity of structural elements providing microsites for establishment. Baseline species richness of the patches, which had been abandoned since at least 1960, was associated with patch area, supporting the effect of ecological drift, and with vegetation type, which suggests that delays in extinction may be related to site factors governing the strength of competition with later seral species. The implementation of this ecological network represents a long‐term ‘natural experiment’ with baseline data, manipulation, and evaluation of hypothesized effects on a clearly defined target variable. It thus provides much needed empirical evidence that species loss in fragmented calcareous grassland communities can be counteracted by restoring functional connectivity among remnant patches.  相似文献   

15.
The alteration and fragmentation of native tallgrass prairie in the Midwestern United States has created a need to identify other land types with the ability to support grassland butterfly species. This study examines butterfly usage of marginal grasslands, which consist of semi-natural grasslands existing within in a larger agricultural matrix, compared to grasslands managed for conservation of prairie species. Using generalized linear mixed models we analyzed how land purpose (marginal vs. conservation grasslands) affected butterfly abundance. We found grassland butterfly species to be significantly more common on conservation grasslands, whereas generalist species were significantly more common on marginal grasslands. Results of ordination analyses indicated that while many species used both types of habitats, butterfly species assemblages were distinct between habitat types and that edge to interior ratio and the floristic quality index of sites were important habitat characteristics driving this distinction. Within conservation grasslands we examined the relationship between butterfly abundance and the planting diversity used in restoring each site. We found higher diversity restorations hosted more individuals of butterflies considered habitat generalists, as well as species considered to be of conservation concern.  相似文献   

16.
The positive monotonic relationship between habitat heterogeneity and species richness is a cornerstone of ecology. Recently, it was suggested that this relationship should be unimodal rather than monotonic due to a tradeoff between environmental heterogeneity and population sizes, which increases local species extinctions at high heterogeneity levels. Here, we studied the richness–heterogeneity relationship for an avian community using two different environmental variables, foliage‐height diversity and cover type diversity. We analyzed the richness–heterogeneity within different habitat types (grasslands, savannas, or woodlands) and at the landscape scale. We found strong evidence that both positive and unimodal relationships exist at the landscape scale. Within habitats we found positive relationships between richness and heterogeneity in grasslands and woodlands, and unimodal relationships in savannas. We suggest that the length of the environmental heterogeneity gradient (which is affected by both spatial scale and the environmental variable being analyzed) affects the type of the richness–heterogeneity relationship. We conclude that the type of the relationship between species richness and environmental heterogeneity is non‐ubiquitous, and varies both within and among habitats and environmental variables.  相似文献   

17.
18.
Changes in agricultural production methods over the last century have caused a massive reduction and fragmentation of the area of European semi-natural grasslands. It remains unclear whether small and isolated grassland fragments can support viable plant populations in a sustainable way. In our study area in southern Belgium, the extent of calcareous grasslands was reduced from c. 650 ha in 1775 to less than 30 ha in 2004. We used AFLP markers to quantify the effects of present and historical grassland fragmentation on the genetic structure of 27 populations of the rare perennial plant species Globularia bisnagarica. Given the mixed breeding system of the species and the relatively small area of the studied system, the populations were characterized by high genetic differentiation (F st range: 0.42–0.48; Φst=0.53). A Mantel test revealed significant isolation by distance of the populations. Average within population genetic diversity, measured as expected heterozygosity or gene diversity, was low (H j =0.081) and was negatively related to population isolation. This suggests more gene flow into less isolated populations. Population size and local habitat characteristics did not significantly influence population genetic diversity. Both, high selfing rates in G. bisnagarica and a population genetic response to habitat fragmentation may explain our findings. Finally, a clear geographical clustering was observed, with cluster membership partially explainable by historical grassland connectivity. If populations indeed started to differentiate after fragmentation, this process was not (yet) strong enough to erase the genetic similarity between fragments that historically belonged to the same large grassland fragment.  相似文献   

19.
Population fragmentation is often correlated with loss of genetic diversity and reduced fitness. Obligate out-crossing (dioecy) is expected to enhance genetic diversity, reduce genetic differentiation, and avoid inbreeding depression through frequent gene flow. However, in highly fragmented populations dioecy has only diminishing effects upon genetic structure as pollination limitations (e.g. flight distance of pollinators) most often restrict inter-population gene flow in insect pollinated species. In fragmented dry grasslands in northeastern Germany, we analysed genetic structure, fitness, and habitat quality of the endangered dioecious Silene otites (Caryophyllaceae). Using AFLP markers, a high level of differentiation among ten populations was found (F st = 0.36), while the intra-population genetic diversities (H E = 0.165–0.240) were similar as compared to hermaphroditic species. There was neither a correlation between geographic and genetic distance nor between genetic diversity and population size, which indicates reduced gene flow among populations and random genetic drift. Plant size was positively correlated with genetic diversity. Seed set and number of juveniles were positively related to population size. Higher total coverage resulted in reduced plant fitness, and the number of juveniles was negatively correlated to cryptogam cover. Additionally, we found a sex ratio bias towards more male plants in larger populations. Overall, our results indicate that on a regional geographic scale dioecy does not necessarily prevent genetic erosion in the case of habitat fragmentation, especially in the absence of long distance seed and pollen dispersal capacity.  相似文献   

20.
Wide-spread fragmentation and isolation of habitats with high nature conservation value lends increasing importance to a better understanding of the factors which determine species richness in isolated habitat patches. Using data of one of the most abundant invertebrate groups in grasslands, Orthoptera, we analysed how species richness and distribution in 60 isolated semi-natural grassland remnants in Austria were affected by five environmental variables (altitude, habitat and land use diversity within each patch, habitat diversity of areas adjacent to each patch, patch size), and related to diversity of their main food source, i.e. vascular plants. We found a significant positive correlation between Orthoptera and vascular plant species richness, with threatened Orthoptera species having the lowest correlation coefficients. Life form diversity of plants was only moderately positively correlated with Orthoptera species richness. Habitat diversity within and adjacent to the grassland patch had by far the highest loadings on the first two axes of the principal component analysis, which jointly explained 99?% of the variance, and proved to be significant for total, threatened and not threatened Orthoptera, as well as for the two Orthoptera orders occurring in Central Europe (Caelifera, Ensifera). Additionally, the distribution of the majority of those 14 Orthoptera species analysed individually was mainly correlated with habitat diversity within and adjacent to the grassland patch. However, the distribution of a significant proportion of species was associated with other factors: five species were closely related to on-site land use diversity and patch size, and the distribution of three Ensifera species was not significantly correlated to any of the explanatory variables. We conclude that a surrogate taxa approach, i.e. the use of well-known taxonomic groups (e.g. vascular plants), may indeed deliver good results for capturing total, but less so for threatened, Orthoptera species richness in semi-natural grassland remnants. Small scale habitat diversity may be crucial to allow for the co-existence of a large number of Orthoptera species and has to be taken equally into account as patch size in nature conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号