首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic approaches to culture have shed new light on the role played by population dispersals in the spread and diversification of cultural traditions. However, the fact that cultural inheritance is based on separate mechanisms from genetic inheritance means that socially transmitted traditions have the potential to diverge from population histories. Here, we suggest that associations between these two systems can be reconstructed using techniques developed to study cospeciation between hosts and parasites and related problems in biology. Relationships among the latter are patterned by four main processes: co-divergence, intra-host speciation (duplication), intra-host extinction (sorting) and horizontal transfers. We show that patterns of cultural inheritance are structured by analogous processes, and then demonstrate the applicability of the host-parasite model to culture using empirical data on Iranian tribal populations.  相似文献   

2.
Cospeciation studies aim at investigating whether hosts and symbionts speciate simultaneously or whether the associations diversify through host shifts. This problem is often tackled through reconciliation analyses that map the symbiont phylogeny onto the host phylogeny by mixing different types of diversification events. These reconciliations can be difficult to interpret and are not always biologically realistic. Researchers have underlined that the biogeographic histories of both hosts and symbionts influence the probability of cospeciation and host switches, but up to now no reconciliation software integrates geographic data. We present a new functionality in the Mowgli software that bridges this gap. The user can provide geographic information on both the host and symbiont extant and ancestral taxa. Constraints in the reconciliation algorithm have been implemented to generate biologically realistic codiversification scenarios. We apply our method to the fig/fig wasp association and infer diversification scenarios that differ from reconciliations ignoring geographic information. In addition, we updated the reconciliation viewer SylvX to visualize ancestral character states on the phylogenetic trees and highlight parts of reconciliations that are geographically inconsistent when not accounting for geographic constraints. We suggest that the comparison of reconciliations obtained with and without such constraints can help solving ambiguities in the biogeographic histories of the partners. With the development of robust methods in historical biogeography, and the advent of next‐generation sequencing that leads to better‐resolved trees, a geography‐aware reconciliation method represents a substantial advance that is likely to be useful to researchers studying the evolution of biotic interactions and biogeography.  相似文献   

3.
Reciprocal co‐evolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population‐ or genotype‐specific evolutionary change. These host–parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of co‐evolving host–parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its co‐evolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus‐infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population‐level co‐evolution is leading to population‐specific host–parasite interactions and evolutionary trajectories. We also used an FST‐based approach to identify a set of loci that represent promising candidates for targets of parasite‐mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population‐specific responses to co‐evolving infection in the P. antipodarum‐Microphallus interaction and provide new insights into the genomic basis of co‐evolutionary interactions in nature.  相似文献   

4.
Given the cost of sex, outcrossing populations should be susceptible to invasion and replacement by self‐fertilization or parthenogenesis. However, biparental sex is common in nature, suggesting that cross‐fertilization has substantial short‐term benefits. The Red Queen hypothesis (RQH) suggests that coevolution with parasites can generate persistent selection favoring both recombination and outcrossing in host populations. We tested the prediction that coevolving parasites can constrain the spread of self‐fertilization relative to outcrossing. We introduced wild‐type Caenorhabditis elegans hermaphrodites, capable of both self‐fertilization, and outcrossing, into C. elegans populations that were fixed for a mutant allele conferring obligate outcrossing. Replicate C. elegans populations were exposed to the parasite Serratia marcescens for 33 generations under three treatments: a control (avirulent) parasite treatment, a fixed (nonevolving) parasite treatment, and a copassaged (potentially coevolving) parasite treatment. Self‐fertilization rapidly invaded C. elegans host populations in the control and the fixed‐parasite treatments, but remained rare throughout the entire experiment in the copassaged treatment. Further, the frequency of the wild‐type allele (which permits selfing) was strongly positively correlated with the frequency of self‐fertilization across host populations at the end of the experiment. Hence, consistent with the RQH, coevolving parasites can limit the spread of self‐fertilization in outcrossing populations.  相似文献   

5.
Partner fidelity through vertical symbiont transmission is thought to be the primary mechanism stabilizing cooperation in the mutualism between fungus‐farming (attine) ants and their cultivated fungal symbionts. An alternate or additional mechanism could be adaptive partner or symbiont choice mediating horizontal cultivar transmission or de novo domestication of free‐living fungi. Using microsatellite genotyping for the attine ant Mycocepurus smithii and ITS rDNA sequencing for fungal cultivars, we provide the first detailed population genetic analysis of local ant–fungus associations to test for the relative importance of vertical vs. horizontal transmission in a single attine species. M. smithii is the only known asexual attine ant, and it is furthermore exceptional because it cultivates a far greater cultivar diversity than any other attine ant. Cultivar switching could permit the ants to re‐acquire cultivars after garden loss, to purge inferior cultivars that are locally mal‐adapted or that accumulated deleterious mutations under long‐term asexuality. Compared to other attine ants, symbiont choice and local adaptation of ant–fungus combinations may play a more important role than partner‐fidelity feedback in the co‐evolutionary process of M. smithii and its fungal symbionts.  相似文献   

6.
The intensity of selection exerted by brood parasites on their hosts depends on the proportion of nests that are parasitized and the fitness costs of parasitism. Nest detection by brood parasites influences the probability of parasitism, and we propose that the difficulty faced by brood parasites of finding nests on the ground may make ground‐nesting species subject to lower levels of parasitism, causing a reduction in levels of defence compared with species breeding in shrubs, trees and elsewhere above the ground. We tested the prediction that the rejection rate of Common Cuckoo Cuculus canorus eggs by hosts is inversely related to the frequency with which they build nests on the ground, both at local and at continental scales. First, we used estimates of the rejection rate of non‐mimetic model eggs experimentally introduced into the nests of 26 potential host species breeding in the Sierra Nevada Mountains of southern Spain. Most species tested in the Sierra Nevada showed high rejection rates of both mimetic and non‐mimetic eggs, whereas the European Robin Erithacus rubecula, with a low rejection rate, was the only species that was regularly parasitized. At the continental scale we used all available published information on rejection rates of non‐mimetic models by European hosts of the Common Cuckoo. The frequency of ground‐nesting explained interspecific variation in rejection rate of non‐mimetic model eggs both for the species tested in the Sierra Nevada and for all European hosts after controlling for all other life‐history variables known to affect rejection rates. An effect of the abundance of trees in a particular habitat, previously shown to affect parasitism by the Common Cuckoo, was only apparent from analyses of continental‐scale data and not from the Sierra Nevada mountains, suggesting that particular properties of mountainous areas affect Common Cuckoo parasitism. Ground‐nesting species showed lower rejection rates than species breeding in bushes or trees. These results suggest that species nesting on the ground may have suffered lower parasitism pressures in their historical coevolutionary interactions with the Common Cuckoo.  相似文献   

7.
To understand the dynamic aspects of multispecificity of ubiquitin, we studied nine ubiquitin–ligand (partner protein) complexes by normal mode analysis based on an elastic network model. The coupling between ubiquitin and ligand motions was analyzed by decomposing it into rigid‐body (external) and vibrational (internal) motions of each subunit. We observed that in total the external motions in one of the subunits largely dominated the coupling. The combination of external motions of ubiquitin and the ligands showed general trends of rotations and translations. Moreover, we observed that the rotational motions of ubiquitin were correlated to the ligand orientations. We also identified ubiquitin atomic vibrations that differentiated the orientation of the ligand molecule. We observed that the extents of coupling were correlated to the shapes of the ligands, and this trend was more pronounced when the coupling involved vibrational motions of the ligand. In conclusion, an intricate interplay between internal and external motions of ubiquitin and the ligands help understand the dynamics of multispecificity, which is mostly guided by the shapes of the ligands and the complex. Proteins 2014; 82:77–89. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Parasites can promote diversity by mediating coexistence between a poorer and superior competitor, if the superior competitor is more susceptible to parasitism. However, hosts and parasites frequently undergo antagonistic coevolution. This process may result in the accumulation of pleiotropic fitness costs associated with host resistance, and could breakdown coexistence. We experimentally investigated parasite‐mediated coexistence of two genotypes of the bacterium Pseudomonas fluorescens, where one genotype underwent coevolution with a parasite (a virulent bacteriophage), whereas the other genotype was resistant to the evolving phages at all time points, but a poorer competitor. In the absence of phages, the resistant genotype was rapidly driven extinct in all populations. In the presence of the phages, the resistant genotype persisted in four of six populations and eventually reached higher frequencies than the sensitive genotype. The coevolving genotype showed a reduction in the growth rate, consistent with a cost of resistance, which may be responsible for a decline in its relative fitness. These results demonstrate that the stability of parasite‐mediated coexistence of resistant and susceptible species or genotypes is likely to be affected if parasites and susceptible hosts coevolve.  相似文献   

9.
Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector‐borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host‐associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within‐host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.  相似文献   

10.
Gene duplication and loss are major driving forces in evolution. While many important genomic resources provide information on gene presence, there is a lack of tools giving equal importance to presence and absence information as well as web platforms enabling easy visual comparison of multiple domain‐based protein occurrences at once. Here, we present Aquerium, a platform for visualizing genomic presence and absence of biomolecules with a focus on protein domain architectures. The web server offers advanced domain organization querying against the database of pre‐computed domains for ~26,000 organisms and it can be utilized for identification of evolutionary events, such as fusion, disassociation, duplication, and shuffling of protein domains. The tool also allows alternative inputs of custom entries or BLASTP results for visualization. Aquerium will be a useful tool for biologists who perform comparative genomic and evolutionary analyses. The web server is freely accessible at http://aquerium.utk.edu . Proteins 2016; 85:72–77. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host‐use trade‐offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade‐offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria‐phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade‐offs.  相似文献   

12.
Funk DJ  Filchak KE  Feder JL 《Genetica》2002,116(2-3):251-267
Does ecological divergence drive species-level evolutionary diversification? How so and to what degree? These questions were central to the thinking of the evolutionary synthesis. Only recently, however, has the ecology of speciation become an important focus of empirical study. Here, we argue that ecologically specialized, phylogenetically diverse, and experimentally tractable herbivorous insect taxa offer great opportunities to study the myriad mechanisms by which ecology may cause reproductive isolation and promote speciation. We call for the development and integrated experimental study of a taxonomic diversity of herbivore model systems and discuss the availability and recent evaluation of suitable taxa. Most importantly, we describe a general comparative framework that can be used to rigorously test a variety of hypotheses about the relative contributions and the macroevolutionary generality of particular mechanisms. Finally, we illustrate important issues for the experimental analysis of speciation ecology by demonstrating the consequences of specialized host associations for ecological divergence and premating isolation in Neochlamisus bebbianae leaf beetles.  相似文献   

13.
14.
Certain kinds of hosts are commonly regarded as being more suitable than other for rearing European cuckoos (Cuculus canorus) – insectivores that lay small eggs and have open, shallow nests – although empirical tests of cuckoo host selection are lacking. We analysed host use by the European cuckoo in 72 British passerines that are potential hosts and for which there was information available on life-history variables and variables related to cuckoo-host coevolution, such as rate of parasitism, rejection rate of non-mimetic model eggs and degree of cuckoo-egg mimicry of host eggs. The relative population size of the host species affected parasitism rate most strongly, followed by relatively short duration of the nestling period, and the kind of nest, with cuckoos selecting open-nesting hosts. However, the effect of the nestling period could be related to host body size and the kind of nest used, because hole-nesting species normally have longer nestling periods than open-nesters. We re-analysed the data excluding hole nesters and corvid species (species with larger body mass), but the results remained identical. The European cuckoo may benefit from selecting hosts with short nestling periods because such hosts provide food for their nestlings at a very high rate. When only those species known as cuckoo hosts were analysed, the variable that best accounted for the parasitism rate was duration of the breeding season. Therefore, availability of potential hosts in both time and space is important for cuckoos in selecting hosts. Received: 16 July 1998 / Accepted: 27 October 1998  相似文献   

15.
A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree‐ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space‐for‐time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas‐fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed‐effects model to capture ring‐width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas‐fir's range; narrower rings and stronger climate sensitivity occurred across the semi‐arid interior. Ring‐width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas‐fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed‐effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree‐ring networks and results as a calibration target for next‐generation vegetation models.  相似文献   

16.
17.
18.
Preparation of new biocompatible materials for bone recovery has consistently gained interest in the last few decades. Special attention was given to polymers that contain negatively charged groups, such as phosphate, carboxyl, and sulfonic groups toward calcification. This present paper work demonstrates that other functional groups present also potential application in bone pathology. New copolymers of 2‐hydroxyethyl methacrylate with diallyldimethylammonium chloride (DADMAC), glycidyl methacrylate (GlyMA), methacrylic acid (MAA), 2‐methacryloyloxymethyl acetoacetate (MOEAA), 2‐methacryloyloxyethyltriethylammonium chloride (MOETAC), and tetrahydrofurfuryl methacrylate (THFMA) were obtained. The copolymers were characterized by FTIR, swelling potential, and they were submitted to in vitro tests for calcification and cytotoxicity evaluation. GlyMA and MOETAC‐containing copolymers show promising results for further in vivo mineralization tests, as a potential alternative to the classical bone grafts, in bone tissue engineering. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 966–973, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
Osteoarthritis (OA), a paramount cause of physical disability for which there is no definitive cure, is mainly characterized by the gradual loss of the articular cartilage. Current nonsurgical and reconstructive surgical therapies have not met success in reversing the OA phenotype so far. Gene transfer approaches allow for a long‐term and site‐specific presence of a therapeutic agent to re‐equilibrate the metabolic balance in OA cartilage and may consequently be suited to treat this slow and irreversible disorder. The distinct stages of OA need to be respected in individual gene therapy strategies. In this context, molecular therapy appears to be most effective for early OA. A critical step forward has been made by directly transferring candidate sequences into human articular chondrocytes embedded within their native extracellular matrix via recombinant adeno‐associated viral vectors. Although extensive studies in vitro attest to a growing interest in this approach, data from animal models of OA are sparse. A phase I dose‐escalating trial was recently performed in patients with advanced knee OA to examine the safety and activity of chondrocytes modified to produce the transforming growth factor β1 via intra‐articular injection, showing a dose‐dependent trend toward efficacy. Proof‐of‐concept studies in patients prior to undergoing total knee replacement may be privileged in the future to identify the best mode of translating this approach to clinical application, followed by randomized controlled trials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Human activities have altered the global nitrogen (N) cycle, and as a result, elevated N inputs are causing profound ecological changes in diverse ecosystems. The evolutionary consequences of this global change have been largely ignored even though elevated N inputs are predicted to cause mutualism breakdown and the evolution of decreased cooperation between resource mutualists. Using a long‐term (22 years) N‐addition experiment, we find that elevated N inputs have altered the legume–rhizobium mutualism (where rhizobial bacteria trade N in exchange for photosynthates from legumes), causing the evolution of less‐mutualistic rhizobia. Plants inoculated with rhizobium strains isolated from N‐fertilized treatments produced 17–30% less biomass and had reduced chlorophyll content compared to plants inoculated with strains from unfertilized control plots. Because the legume–rhizobium mutualism is the major contributor of naturally fixed N to terrestrial ecosystems, the evolution of less‐cooperative rhizobia may have important environmental consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号